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IDA supports efforts to provide individuals with dyslexia with appropriate instruction and  
to identify these individuals at an early age. IDA believes that multisensory teaching and 
learning is the best approach currently available for those affected by dyslexia.

While IDA is pleased to present a forum for presentations, advertising, and exhibiting  
to benefit those with dyslexia and related learning disabilities, it is not IDA’s policy to 
recommend or endorse any specific program, product, speaker, exhibitor, institution, 
company, or instructional material, noting that there are a number of such which present the 
critical components of instruction as defined by IDA. 
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Dear Colleagues and Friends,

Reading and arithmetic are cultural inventions that have 
come to us relatively recently. When considered in the context 
of some of the other abilities that we have from birth (visual and 
auditory discrimination) or acquire in our repertoire of skills 
during development (spoken language), reading and arithmetic 
are not attained easily; we have to make a concerted effort to 
learn them once other contributing cognitive and sensorimotor 
skills have developed sufficiently to support them. 

You have probably heard people say that there is nothing 
natural about teaching a child to learn to read. There are no 
brain regions that are innately programmed to read (unlike the 
many regions of the brain that are set up to deal with specific 
tasks from birth). The reason we learn to read is because our 
society places a great deal of importance on it and our environ-
ment requires us to do it on a regular basis. Reading has to  
be taught and, as has been demonstrated through functional 
brain imaging research, during a protracted period of explicit 
instructions, the brain regions that are engaged during word 
reading change as the reader becomes more proficient. Further, 
the brain regions that make up the “reading network” in a 
skilled reader are areas that were not designed to read, but 
were intended for other kinds of functions. 

The reason they became reoriented to the reading process 
has something to do with the properties they have that  
make them amenable to be drawn into reading (perhaps their 
involvement in language processing or visual analysis of 
objects). How this occurs exactly is not known. While it is often 
stated that our brains are “learning machines” that can learn 
the many skills demanded by our cultural situation, it has also 
been suggested that brain areas that play a role in reading do 
so not because of their capacity to support learning per se. 
Instead, these regions subserve functions that are sufficiently 
close to reading and become “recycled” into performing this 
task (see the work of Stanislas Dehaene for a very fascinating 
account of the recycling theory). 

The same concept would apply to arithmetic. Like reading, 
arithmetic is optional and it is achieved through learning.  
Yet there are certain skill sets that children bring to the table 
that provide an important basis on which to build arithmetic 
concepts. That is, “number sense” is to arithmetic what “pho-
nological sensitivity” is to reading. Preschool aged children 
possess the capacity to readily manipulate nonsymbolic quan-
tity, as evidenced by their ability to discriminate magnitude and 

even perform arithmetic operations on dot arrays and sequenc-
es of sounds. However, as children begin to learn the symbolic 
representation of numbers (our cultural representation of  
quantity) they take on a uniquely human task. As for reading, 
areas in the brain that are responsible for non-symbolic and 
symbolic arithmetic processes have been identified and studied 
over development. Age-related increases of activity have been 
observed during a symbolic magnitude judgment task, suggest-
ing a developmental specialization of the left hemisphere for 
the representation of symbolic magnitude, while no such differ-
ences are observed when comparing adults and children dur-
ing non-symbolic magnitude judgment. When comparing 
children and adults on arithmetic tasks, the mature brain relies 
on frontal brain regions to perform simple subtractions and 
additions, while children use regions in the back of their brain. 
Curiously, this developmental trajectory is somewhat different 
from reading, where frontal brain areas are engaged in the 
older, more proficient reader.

How does this complex mixture of biological predisposition 
and cultural context play out in the reality of the classroom? Our 
understanding of why children are successful in these skills has 
been greatly increased by research efforts over the last 40 years 
for reading, and more recently for mathematics. Specifically, 
there has been a deliberate effort to fund more research in the 
area of mathematics, recognizing that the need to have better 
ways of predicting, identifying, and instructing children with 
difficulties in this domain. This issue of Perspectives on Language 
and Literacy, spearheaded by Michèle Mazzocco, provides a 
very timely update of these research efforts. It has been of great 
interest to researchers and practitioners to have better tools to 
understand the development of mathematics and to uncover the 
reasons why some children stumble when it comes to learning 
arithmetic. Also, why is it that some children are challenged by 
both reading and math? Is it because of something that both of 
these domains share and that is weaker in these students (such 
as working memory)? What interventions and exercises promote 
numeracy and mathematics outcome? Many of the answers to 
these questions are in this issue, and I thank Dr. Mazzocco and 
her colleagues for bringing this complex body of work into a 
succinct summary for our readers.

Sincerely yours,

Guinevere Eden, D.Phil., President
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The International Dyslexia Associ-
ation (IDA) recently received a 

significant gift to improve the quality 
and efficiency of its website. This gift 
enables IDA to utilize its Knowledge 
and Practices Standards for Teachers 
of Reading to identify, evaluate, and 
endorse qualified tutoring and testing 
providers by funding an upgraded, 
comprehensive database of certified 
professionals in a more sophisticated 
format. This upgrade will provide 24/7 
access to a list of qualified profession-
als within a certain radius simply by 
inputting a zip code. 

Born in 1961, K. Bryant Wicke was 
an avid sportsman and philanthropist, 
serving on the Tremaine Foundation 
board for over 20 years. He suddenly 
and tragically died in 2009 from injuries resulting from an 
automobile accident.

The motivation behind the gift to IDA is to assist parents 
and families of children confronting learning difficulties.  
It recognizes IDA’s outstanding contributions to the field  
of learning disabilities by providing additional resources  
to continue its longstanding mission to improve the lives  
of individuals, both young and old, with dyslexia. But  
the heartfelt element of this gift is in honor of a wonderful 
man who loved life, his family, friends, and those young 
people who deserve a hand in their struggle with learning 
disabilities.

As a member of the Tremaine family, Bryant was a  
part of a substantive tradition of philanthropy directed  
at dyslexia and learning disabilities. For many years, the 

Tremaine Foundation has provided 
the field with vision, thinking, and 
influence that have been the bench-
mark for others. The Foundation’s 
openness and forthright attitude  
about the challenges facing our com-
munity reflect the personalities on its 
board. Bryant was very proud to serve 
with his family members and to  
have the opportunity to chair the 
Foundation’s board.

Bryant brought to the table a level 
of passion and spirit that comes only 
through the adversity and pain one 
feels when dealing with dyslexia  
firsthand. Bryant’s attitude toward life 
showed a drive to succeed and to 
persuade and encourage others with 

learning disabilities that they were indeed remarkable indi-
viduals, with skills and insights that would see them clear 
of any hurdle before them. His long trusteeship at the 
Hillside School, a middle school for boys, was another 
example of his commitment to reach out to his peers. He 
was also a generous donor to Linden Hill, a small and nur-
turing boarding school for boys with learning disabilities. 

Young people need spiritual mentors like Bryant Wicke 
to sustain them when they can only see their own faults 
and weaknesses. Through this gift and the memories of 
everyone who knew him, Bryant is still with us, supporting 
all those who work in the field of learning disabilities and 
reminding us, repeatedly, that we can if we will.

— Henry Sinclair Sherrill

A Gift in Memory of K. Bryant Wicke,  
Former Chairman of the Tremaine Foundation

November 6-9
Ernest N. Morial Convention Center
New Orleans, LA

2013

N E W  O R L E A N S

November 9-12
Hilton Chicago
Chicago, IL

C H I C A G O

2011
October 24-27
Baltimore Convention Center
Baltimore, MD

B A L T I M O R E

2012

UPCOMING IDA CONFERENCES!
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Researchers of children’s mathematical difficulties (MD) are 
frequently asked the very questions they seek to answer: 

In this issue of Perspectives on Language and Literacy, we 
summarize some of the current knowledge regarding why chil-
dren struggle with mathematics and what
children’s mathematical success. 

The short answer to these questions is simply, “it depends.” 
It depends on characteristics of students and teachers, how and 
what students are learning, and how and what teachers are 

many factors and their influences are unknown or untested. In 
this issue we address students’ specific and general cognitive 

how these factors may promote or hinder how readily students 

transfer skills and knowledge across components of mathemat-
ics knowledge. Although several influences on mathematics 

-
ways associated with these factors are not yet fully understood. 

-
times partial, or even tentative, in view of the paucity of 
research on MD (e.g., Gersten, Clark, & Mazzocco, 2007). Still, 
it is apparent that a complete response to each question is mul-

Powell, Fuchs, and Fuchs summarizing their intervention 

(sometimes misleadingly referred to as “math facts”). They reveal 
that the effectiveness of attempts to tutor students who struggle 

not readily retrieved as facts, and whether students have oppor-

on whether students struggling with mathematics are also strug-
gling readers, as these authors discuss. 

memory in learning, performing, and teaching mathematics. 

Berch articulates how mathematics learning and performance 
depend on individual and developmental differences in chil-
dren’s working memory capacities, on differences in the working 
memory demands across math tasks, and on how well teachers 

related to working memory. Thus, Dr. Berch exemplifies that why 
children struggle with math depends on characteristics of chil-
dren (e.g., their working memory skills) and on the instruction 
they receive, and how to teach struggling learners depends on 

An explanation for why students struggle with math also 
depends on whether students have a conceptual understanding 
of the mathematics they are learning. In her article, Julie Booth 
emphasizes the importance of differentiating, attending to, and 

-

which can further hinder their learning. Dr. Booth explains why 

for successful mathematics instruction,” while also “cultivating 
strong conceptual understanding.” She exemplifies routes 
towards achieving these goals, including the use of meaningful 
assessments of why students struggle with math and recogniz-
ing that what we learn from assessments depends on how we 
ask the questions. “One can acquire very different types of 

Teachers’ effectiveness in promoting conceptual learning 
depends on their own knowledge of mathematics content and 

and her colleagues in this issue. These authors stress that,  
“the magnitude of the effect of teacher knowledge on student 

other risk factors. For example, as Dr. Murphy and colleagues 

 
-

nomic status is a risk factor for poor mathematics achievement 
outcomes (Jordan & Levine, 2009). 

depends on these and other characteristics of students, teach-

Continued on page 8

Theme Editor’s Summary
Mathematical Difficulties in School Age 
Children
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are present at optimal levels, learning may be compromised if 
students are not engaged. Laurie Hanich explains that cognitive 
and motivational behaviors are “dynamically related, [such 
that] children’s belief systems in turn may affect adaptive 
behaviors for mathematics learning” (Hanich, this issue). 
Although this principle applies to learning across domains, Dr. 
Hanich explains that repeated failures with mathematics may 
further impede learning in students who struggle with mathe-
matics by prompting them to avoid mathematical instructional 
opportunities and tasks (intentionally or not). Hanich explains 
that engagement is driven by child characteristics and the 
opportunities educators provide to foster engagement.

Finally, why students struggle with mathematics and how 
teachers should respond to them also depends on what we 
mean by “struggling with mathematics” and on the cognitive 
skills that underlie children’s math learning and performance. 
Not all students who struggle with mathematics struggle in the 
same way or for the same reason, and not all children who 
struggle with mathematics have a specific mathematical learn-
ing disability (MLD) if we define MLD as a domain-specific 
deficit in understanding or processing numerical information. 
However, this term, which is often and accurately used synony-
mously with developmental dyscalculia, is not defined consis-
tently in the literature (as reviewed elsewhere, for example, 
Mazzocco, 2007). Most children with mathematical difficulties 
(MD) do not have MLD, as supported by the lower prevalence 
rate for the latter. Approximately 10% of children have MLD (as 
reviewed by Shalev, 2007). In contrast, far higher rates of math-
ematical difficulty are implicated by large scale national reports, 
such as the Nation’s Report Card that claims 27% of U.S. eighth 
graders fail to demonstrate mastery of basic mathematics, and 
66% fail to achieve mathematical proficiency (e.g., NCES, 
2009). It is unlikely that all of these students have MLD. Thus, 
although difficulties with mathematics may be secondary to 
either domain-general cognitive deficits (e.g., working memory) 
or environmentally influenced learning obstacles (e.g., the 
effects of poverty), they may also be linked to numerical deficits 
characteristic of MLD. Of course, such difficulties may also 
result from some combination of these separate factors. 

Researchers have found important differences in the cogni-
tive characteristics of children who meet criteria for MLD ver-
sus MD (e.g., Geary et al., 2007; Murphy et al., 2007), just as 
there are differences in children whose mathematical difficul-
ties do, or do not, co-occur with reading disabilities (e.g., 
Jordan et al, 2003). Thus, in the final article of this special issue, 
I focus on sources of individual differences in number skills 
seen among and between groups of children with MD, includ-
ing the subset of these children who have MLD. 

To summarize, there are many reasons why students struggle 
with mathematics. We address several of them in this special 
issue. Some additional factors have been addressed elsewhere; 
for instance, the importance of language in mathematics class-
rooms was addressed in an earlier volume of Perspectives (i.e., 
Volume 34(2) by Woodward, Montague, Jitendra, & Baxter, 
2008); while other factors remain to be discovered. Like the 

goal that underlies ongoing research on children’s mathemati-
cal learning difficulties, the objective of this special issue is to 
support your ability to answer the very questions that guide our 
research, in reference to individual students in your charge. In 
other words, we hope that the articles that follow will help you 
determine possible sources of mathematics difficulty for indi-
vidual students you encounter, and will guide your efforts to 
support each student’s learning of mathematics skills, proce-
dures, and concepts. 
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Students with mathematics difficulty (MD) often struggle with 
developing fluency with number combinations. Problems 

with number combinations can lead to difficulties with compu-
tation, geometry, algebra, problem solving, and most other 
mathematics topics. In this article, we discuss fluency with 
number combinations and its importance for mathematics 
development. We also discuss why students struggle with learn-
ing number combinations. Then, we describe four studies that 
we conducted to remediate number combinations difficulties. 
Finally, we offer suggestions for helping students with MD learn 
number combinations.

Before proceeding, we comment on the use of the term MD. 
We, similar to other researchers, have defined low performance 
in mathematics as mathematics difficulty. In our studies, stu-
dents with mathematics difficulty performed below the 26th 
percentile on a standardized test of mathematics. Some of these 
students with MD had an official school diagnosis of mathe-
matics learning disability, but many of the students with MD 
struggled with low mathematics performance without an offi-
cial diagnosis. 

What Are Number Combinations?
Number combinations are sometimes referred to as basic 

facts or math facts. We use the term number combinations to 
show that students can work and solve these problems; that is, 
these problems do not have to be recalled as a fact from mem-
ory. Number combinations comprise 390 addition, subtraction, 
multiplication, and division number combinations that are 
some of the basic building blocks of mathematics (Hudson & 
Miller, 2006). See Table 1 for examples of each of the follow-
ing types of number combinations. Addition number combina-
tions have addends of 0–9 and a sum of 0–18. Subtraction 
number combinations have minuends of 0–18 and subtrahends 
and differences of 0–9. Multiplication number combinations 
have factors of 0–9 and products ranging from 0–81, whereas 
division number combinations have dividends of 0–81, divisors 
of 1–9, and quotients of 0–9. Generally, addition number  
combinations are more likely to be retrieved from memory 
(rather than calculated) compared with the three other types  
of number combinations. Because our work on number combi-
nations has focused exclusively on addition and subtraction, 
we limit our discussion to addition and subtraction combina-
tions in this article. 

Why Are Number Combinations Important?
It is important that students know (i.e., retrieve from memo-

ry) or be able to solve (i.e., quickly calculate an answer) num-
ber combinations because number combinations are necessary 
for solving most other types of math problems: computation, 
money, measurement, geometry, algebra, and problem solving. 
If students do not know or cannot calculate the answer to a 
number combination with relative ease, then solving other 
math problems is more difficult or impossible (Kroesbergen & 
Van Luit, 2003). Think of how difficult it might be to subtract 
coins (e.g., 17 pennies minus 9 pennies) or calculate the perim-
eter of a rectangle (e.g., 8 inches plus 6 inches) if a student  
does not demonstrate fluency with number combinations. 
Additionally, students with weak number combinations skill 
may develop anxiety about mathematics (Hudson & Miller, 
2006), which may promote negative attitudes about mathemat-
ics and avoidance of situations where mathematics is necessary 
(as discussed by Laurie Hanich, this issue). 

Students Who Struggle with Number Combinations
Many students who struggle with mathematics demonstrate 

a lack of skill with number combinations (Andersson, 2008; 
Geary, Hamson, & Hoard, 2000; Hanich, Jordan, Kaplan, & 
Dick, 2001). For example, second-grade students with MD 
answered fewer number combinations correctly than students 
without MD (Hanich et al., 2001). A similar trend emerged 
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Type Terminology Examples

Addition addend + addend = sum
3 + 4 = 7
9 + 6 = 15

Subtraction
minuend - subtrahend = 
difference

4 - 1 = 3
13 - 8 = 5

Multiplication factor x factor = product
3 x 2 = 6
8 x 7 = 56

Division dividend ÷ divisor = quotient
9 ÷ 3 = 3
72 ÷ 8 = 9

TABLE 1. Types of Number Combinations
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with third- and fourth-grade students where students with MD 
performed significantly lower and made more errors on a test 
of number combinations than students without MD (Andersson, 
2008). These deficits in number combinations skill may stem 
from difficulties in storing and retrieving number combinations 
from long-term memory or from deficits in keeping number 
combinations in working memory (e.g., Geary, Hoard, Byrd-
Craven, & DeSoto, 2004; Jordan & Montani, 1997), as elabo-
rated by Daniel Berch in this issue. Because past attempts at 
remediating number combinations have been equivocal 
(Kroesbergen & Van Luit, 2003), we conducted four studies to 
investigate how to help students develop fluency with number 
combinations skill. 

Four Studies Designed to Improve Fluency with Number 
Combinations 

To investigate ways to help students with MD with number 
combinations, we conducted four studies over a four-year span, 
one each year. Each study was carried out with third graders. 
The four studies, which focused on acquisition and fluency 
performance on addition and subtraction number combina-
tions, constituted a program of research in which each study 
was designed to address questions that arose in the prior stud-
ies. In this way, a linear progression exists across the studies  
as we learned more each year about number combinations 
instruction and learning. See Figure 1 for a flowchart of the four 
studies. These four studies are described in greater depth in 
Fuchs, Powell, Seethaler, Fuchs, et al. (2010). Students in all 
four studies struggled with mathematics (i.e., performing  
below the 26th percentile on a standardized mathematics  

computation test of addition, subtraction, multiplication, and 
division) although their underlying sources of the mathematics 
difficulty may have varied. Students in all four studies were 
identified as having MD in the same manner with the same 
standardized test.

Study 1: Practice, practice, practice. The first iteration of 
number combinations tutoring included three daily activities: 
computer drill-and-practice, flash cards, and a review (Fuchs et 
al., 2008). With computer drill-and-practice, students were pre-
sented with number combinations for 7.5 minutes. A number 
combination “flashed” on a computer screen (e.g., 5 + 4 = __). 
It disappeared within a second or two; then the student typed in 
the entire combination (e.g., 5 + 4 = 9) from memory. As the 
student typed in the number combination, a number line picture 
filled in at the top of the screen. For addition problems, the first 
addend was represented in blue boxes and the second addend 
was represented in yellow boxes. For subtraction problems, the 
minuend boxes filled in with a yellow color, and the subtrahend 
was represented by Xs over the minuend boxes. If a student 
answered the number combination correctly, they heard 
applause and earned a point toward treasures that collected in 
a treasure box on the screen. If the student answered incor-
rectly, they were required to retype the combination until it was 
answered correctly. At the end of 7.5 minutes, the student’s 
score (i.e., number of correctly answered combinations) was 
presented on the computer screen. After this computer drill-and-
practice, students answered number combination flash cards, 
presented by the tutor, for 2 minutes. At the end of 2 minutes, 
the tutor and student counted the correctly answered flash cards 
and placed the score on a graph. After 3 consecutive sessions of 
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Study 2

Explicit instruction 
(NC)

Computer drill- 
and-practice NC flash cards Number line  

flash cards Paper review

Study 4

Counting strategies Explicit instruction 
(word problems) NC flash cards Paper review

Study 1

Computer drill- 
and-practice

NC flash cards/
Number line  
flash cards

Paper review

FIGURE 1. Progression of Study Designs for Four Studies on Number Combinations (NC)
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answering 35 number combinations flash cards correctly, the 
tutor then switched to number line flash cards for the flash card 
activity. The number line flash cards represented combinations 
similar to those presented during computer drill-and-practice. 
Students were asked to state the combination represented by the 
number line. Similar to number combinations flash cards, stu-
dents graphed the number of correctly-answered cards after 2 
minutes. Each session concluded with a paper review of 15 
number combinations. Students had 2 minutes to answer as 
many number combinations as possible.

Conditions. We compared this number combinations  
tutoring to three other tutoring conditions: (a) double-digit com-
putation and estimation, (b) double-digit computation and 
estimation with number combinations tutoring, and (c) word 
identification. In double-digit computation and estimation 
tutoring, students worked through double-digit addition and 
subtraction problems via a computer program, answered  
double-digit flash cards, and answered double-digit problems 
on a paper review. Double-digit computation and estimation 
with number combinations tutoring included the components 
of both double-digit computation and estimation tutoring and 
number combinations tutoring. Word-identification tutoring 
students participated in computer drill-and-practice on sight 
words and read passages aloud for fluency practice; this was a 
control condition. All students received tutoring for 15 weeks, 
3 sessions per week, 15–30 minutes per session. Tutoring ses-
sions were delivered during the school day at times designated 
by the classroom teacher. Students were tutored individually in 
locations outside of the student’s classroom (i.e., hallway, 
empty classroom, library, or conference room).

Results. (See Table 2 for results from the four studies.  
Effect sizes (ES) are reported for significant results.) Students 
participating in number combinations tutoring demonstrated 
significantly stronger improvement in number combinations 
compared to students in the double-digit computation and 
estimation condition (ES = 0.69), the double-digit and number 
combinations condition (ES = 0.81), or the word identification 
condition (ES = 0.78). From this first study, we learned that 

students who were tutored on number combinations alone 
demonstrated stronger improvement than those students who 
received number combinations tutoring in conjunction with 
tutoring on double-digit computation and estimation. We also 
learned that the combination of computer drill-and-practice, 
flash cards, and paper review appeared to improve fluency 
with number combinations.

 Study 2: Providing conceptual instruction. To determine 
the importance of conceptual instruction for number combina-
tions remediation, the second study compared the number 
combinations tutoring of Study 1 to an expanded number com-
binations tutoring with conceptual number combinations 
instruction (Powell, Fuchs, Fuchs, Cirino, & Fletcher, 2009). 
Number combinations tutoring included only three activities, 
which were similar to the number combinations activities in 
Study 1: computer drill-and-practice, number combinations 
flash cards, and paper review. The expanded tutoring included 
six activities: conceptual instruction, number combinations flash 
cards, computer drill-and-practice, number line flash cards, 
combinations family review, and paper review. (The two flash 
card activities, computer drill-and-practice, and paper review 
were similar to the activities described above.) With the concep-
tual instruction, tutors and students worked with manipulatives 
(i.e., blue and yellow blocks) to show various combinations of a 
fact family (i.e., 2 + 4 = 6; 4 + 2 = 6; 6 – 2 = 4; 6 – 4 = 2). 
Students then practiced generating families of number combina-
tions on the combinations family review. 

Conditions. We compared the performance of the students 
in the two number combinations conditions described above, 
referred to here as number combinations, and expanded num-
ber combinations, to students in two competing conditions: (a) 
double-digit computation and estimation tutoring and (b) no 
tutoring (i.e., control). The double-digit computation and esti-
mation tutoring was similar to the tutoring described in Study 
1. Tutoring for students in all three tutoring conditions lasted 15 
weeks, 3 sessions per week, 15–25 minutes per session. 

Continued on page 14

Study Conditions Significant results on NC Effect sizes

1 Number combinations tutoring (NC)
Double-digit computation and estimation tutoring (DD)
Double-digit computation and estimation with number combinations tutoring (COMB)
Word identification tutoring (CONTROL)

NC > DD
NC > COMB
NC > CONTROL

0.69
0.81
0.78

2 Number combinations tutoring (NC)
Expanded Number combinations tutoring with conceptual instruction (E-NC-CONC)
Double-digit computation and estimation tutoring (DD)
No tutoring (CONTROL)

NC > DD
NC > CONTROL
E-NC-CONC > DD
NC-CONC > CONTROL
NC = NC-CONC

0.31
0.50
0.37
0.53
  –

3 Number combinations tutoring with counting strategies (NC-COUNT)
Word-problem tutoring with counting strategies (WP-COUNT)
No tutoring (CONTROL)

NC-COUNT > CONTROL
WP-COUNT > CONTROL
NC-COUNT = WP-COUNT

0.52
0.62
  –

4 Word-problem tutoring with counting strategies practice (WP-COUNT)
Word-problem tutoring (WP)
No tutoring (CONTROL)

WP-COUNT > CONTROL
WP-COUNT > WP
WP > CONTROL

0.67
0.22
0.43

TABLE 2. Results from Number Combinations Studies



Results. Students in both number combinations conditions 
performed similarly to one another. Students who received 
number combinations tutoring (without conceptual instruc-
tion) significantly outperformed students in the double-digit 
tutoring (ES = 0.31) and control (ES = 0.50) conditions. 
Similarly, students receiving the expanded number combina-
tions tutoring demonstrated significantly higher scores than 
double-digit tutoring (ES = 0.37) and control students (ES = 
0.53). It was interesting to note that students in either number 
combinations conditions performed similarly even though the 
students who received expanded tutoring on number combina-
tions spent much more time on the conceptual basis of number 
combinations, having to work through and think about how 
number combinations relate to one another. This finding sug-
gests that students with MD needed to learn a plan or strategy 
for solving number combinations when the answer is not 
immediately recalled. For this reason, we introduced counting 
strategies in Study 3. 

Study 3: Counting strategies. Number combinations tutoring 
in Study 3 included instruction on how to use counting  
strategies to solve addition and subtraction combinations (Fuchs 
et al., 2009). (See Figure 2 for an explanation of the counting 
strategies.) Number combinations tutoring included five activi-
ties: 1) number combinations flash cards, 2) explicit instruction, 
3) lesson-specific flash cards, 4) computer drill-and-practice, 
and 5) paper review. The number combination flash cards,  
computer drill-and-practice, and paper review used in this  
condition were the same as described in Studies 1 and 2. 
Explicit instruction focused on teaching and practicing the 
counting strategies along with instruction focused on groups 
(not families) of number combinations (e.g., the +0 and –0 com-
binations; the +1 and –1 combinations). The lesson-specific 
flash cards also focused on the groups; students answered these 
cards for 1 minute. As students moved on to the next group, they 
were permitted to take the lesson-specific flash cards home  
for practice.

Conditions. In addition to the number combinations tutor-
ing condition used in this study, the comparison conditions in 
Study 3 were (a) word-problem tutoring and (b) no tutoring 
(i.e., control). Word-problem tutoring consisted of teaching 
students to read, set up, and solve word problems by problem 

type. Students also learned the counting strategies taught in 
number combinations tutoring. Students in each of the two 
tutoring conditions received instruction over 16 weeks, 3 ses-
sions per week, 20–30 minutes per session. 

Results. On number combinations, students participating in 
number combinations tutoring outperformed control students 
(ES = 0.52). There were no differences between students receiv-
ing number combinations or word-problem tutoring, given that 
word-problem tutoring also included instruction on solving 
number combinations with counting strategies. Interestingly, 
word-problem tutoring students outperformed control students 
on number combinations (ES = 0.62). From this study, we 
learned that explicit instruction and practice on using counting 
strategies to solve number combinations appeared to be an 
important component of number combinations instruction.

Study 4: Daily practice with counting strategies. Because all 
tutored students, regardless of whether counting strategies and 
number combinations were the focus of tutoring, improved reli-
ably more than control students on number combinations in 
Study 3, the goal of Study 4 was to determine how much prac-
tice on counting strategies was necessary (Fuchs, Powell, 
Seethaler, Cirino et al., 2010). In Study 4, students in each of  
two active tutoring conditions received instruction on word 
problems. The nature of word-problem instruction in the two 
conditions was identical. The only difference between the two 
conditions was that only one condition included daily practice 
on number combinations, and the other did not. For instance, in 
both conditions, students received an initial explanation lesson 
on counting strategies, but in only one condition did students 
also receive daily practice on solving number combinations 
with counting strategies. Specifically, in both conditions,  
students participated in word-problem warm up, explicit word-
problem instruction, word-problem sorting cards, and paper 
review. These activities focused on solving word problems 
belonging to three word-problem types: total, difference, and 
change. Students in both conditions also participated in flash 
cards, but the nature of the flash card activity differed across the 
two conditions. Children in the word problem tutoring without 
the practice condition simply read numbers on flash cards. 
Children in the number combinations instruction with daily 
practice condition answered number combinations flash cards 
for 1 minute. If a student answered incorrectly, the tutor asked 
him or her to use a counting strategy until the student answered 
correctly. At the end of 1 minute the number of correctly  
answered flash cards was recorded on a graph. During counting 
up practice, the tutor asked the student to solve four number 
combinations using counting strategies. In summary, although 
students in the word-problem tutoring without daily practice 
received explicit instruction on using counting strategies to solve 
number combinations, they did not participate in the number 
combinations flash cards or counting practice each session. 

Conditions and results. Tutoring in both active conditions 
lasted 16 weeks, 3 sessions per week, 20–30 minutes per  
session. We also incorporated a no tutoring condition (i.e., 
control). On number combinations, students who received 
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FIGURE 2. Counting Strategies

COUNTING UP
Addition

COUNTING UP
Subtraction

1. Put the bigger number in 
your fist and say it.

2. Count up the smaller 
number on your fingers.

3. Your answer is the last 
number you say.

1. Put the minus number in 
your fist and say it.

2. Count up your fingers to 
the number you start with.

3. Your answer is the number 
of fingers you have up.



word-problem tutoring with daily counting strategies practice 
outperformed students in the control condition (ES = 0.67) and 
students who received the word-problem tutoring without daily 
counting strategies practice condition (ES = 0.22). Nevertheless, 
students who received word-problem tutoring without daily 
practice outperformed control students (ES = 0.43). From Study 
4, we learned that students require daily practice on number 
combinations even if the time spent on number combinations 
is only a few minutes per session.

Lessons Learned Across the Four Studies
In Studies 1 and 2, we provided third graders with tutoring 

focused wholly on number combinations. The instruction 
included a variety of activities ranging from flash cards to com-
puter drill-and-practice to explicit conceptual instruction to 
paper reviews. We hoped that a package of diverse number 
combinations activities would be the best route for remediation 
of number combinations skill. In Studies 3 and 4, however, we 
provided brief but explicit instruction on solving number com-
binations, and we learned that students benefit from learning a 
strategy to solve number combinations. Students benefitted 
from counting strategies instruction embedded within word-
problem tutoring just as much as tutoring programs focused 
exclusively on number combinations. So, we learned that num-
ber combinations instruction can be provided alongside 
instruction on word problems, and students still derive benefit 
on number combinations. 

Starting in Study 3, we began to provide students with count-
ing strategies for solving number combinations when they did 
not automatically recall the answer (i.e., counting strategies). 
We felt students needed a reliable and efficient backup plan. In 
Study 4, we isolated the effect of practice within counting strat-
egies instruction and our findings suggest the importance of 
daily (albeit brief) practice for this population of learners. In this 
way, we conclude that providing students with explicit instruc-
tion (i.e., counting strategies) on solving number combinations 
and practicing these counting strategies is an important and 
efficient component of mathematics instruction for students 
with MD. 

Additionally, we note that, across studies, students partici-
pated in daily flash card practice and a paper review to improve 
number combinations fluency. Although we never isolated  
the contribution of flash card practice or paper reviews, we 
believe that reviewing number combinations and requiring 
students to use counting strategies to solve flash cards answered 
incorrectly and graphing the flash card score, may be another 
important component of number combinations instruction. 
Along the same lines, reviewing number combinations on 
paper may be important for ensuring transfer to paper-and-
pencil tasks.

Will All Students with MD Benefit from Number 
Combinations Instruction? 

As already mentioned, in each of the four studies in this 
program of research, all participants were third grade students 
who struggled with mathematics. Some of these students also 
struggled with reading difficulties (RD) (i.e., scored below the 
26th percentile on a standardized reading test) and were  

therefore categorized as having MD+RD. Other students per-
formed above the 40th percentile in reading and were therefore 
categorized as having MD-only. In each of the four studies, we 
looked for performance differences between MD+RD and 
MD-only students. Some prior research has shown perfor-
mance differences on number combinations between students 
with MD+RD and MD-only students (Hanich et al., 2001) with 
MD-only students outperforming MD+RD students, whereas 
other research has not demonstrated differences between stu-
dents with MD+RD and MD-only on number combinations 
(Geary, Hoard, & Hamson, 1999).

Unfortunately, in all but one of our four studies reviewed 
here, the number of students in each subgroup was too small  
to determine whether response to intervention differed as a 
function of whether students experienced MD alone or in  
combination with RD. Yet, some patterns in the data provide 
the basis for hypothesizing that relative to students with 
MD-only, students with MD+RD may require more intensive 
intervention, and different kinds of intervention that have more 
systematic practice with a greater emphasis on language. 
Large-scale intervention research is, however, needed—with 
adequately large samples of students with MD with and with-
out RD—to assess the tenability of these hypotheses. 

Advice for Teachers and Parents 
Based on this program of research on number combinations 

remediation, many students with MD benefit from explicit 
instruction on how to solve number combinations. Students 
should be provided with strategies for solving combinations 
when the answer is not immediately recalled and should 
receive many opportunities to practice solving number combi-
nations through a variety of formats (i.e., flash cards, oral quiz-
zes, paper reviews). From what we have learned from our 
program of research, we feel that the more opportunities stu-
dents have to see and work with number combinations, the 
more likely they will improve their number combinations skill. 
More opportunities does not necessarily mean more time prac-
ticing number combinations, because, as we have learned in 
our studies, it appears that students benefit from well-designed 
and implemented number combinations tutoring that lasts a 
few minutes each session just as much as number combina-
tions instruction that lasts 30 minutes each session. We believe 
students should be provided with explicit instruction on solving 
number combinations and provided with different outlets to 
practice number combinations throughout the school year. 
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Some school-age children struggle with mathematics, rou-
tinely experiencing difficulty in learning or remembering 

basic arithmetic facts and carrying out even the seemingly most 
elementary numerical operations (Berch & Mazzocco, 2007). 
Such difficulties are compounded when students are expected 
to build upon these basic skills as they are introduced to 
increasingly abstract, mathematical content domains. Consider 
a letter published in the Washington Post written by a seventh-
grade teacher not that long ago: 

Many of the seventh graders I teach have a poor sense 
of numbers. They don’t understand that adding two 
numbers results in a larger number, that multiplication 
is repeated addition, that 5 × 6 is larger than 5 × 4 or 
that one quarter is smaller than one half. This lack of 
basic math facts detracts from their ability to focus on 
the more abstract operations required in math at a 
higher level” (Susan B. Sheridan, Washington Post, 
December 27, 2004). 

What are the key factors contributing to this state of affairs? 
Is the problem due primarily to poor instruction, or is there 
something inherently difficult about learning even basic arith-
metic because of the ways in which the developing child’s 
mind works? Have we been able to trace the origins of extreme-
ly low math performance that would warrant the diagnosis of a 
mathematical learning disability? And do effective remedial 
approaches exist for improving the mathematics achievement 
of such children? 

As it turns out, definitive answers to these weighty questions 
still elude us. Nonetheless, progress is being made on a number 
of fronts, especially in the study of the fundamental cognitive 
processes that underlie mathematical thinking in general and 
those that are crucial for achieving proficiency in carrying out 
arithmetic calculations in particular. In this article, I will review 
what we have learned about the contributions of an especially 
important factor known as “working memory,” along with the 
difficulties that can arise for students who exhibit weaknesses  
if not outright deficits in the full complement of skills compris-
ing this construct. 

Introduction to the Concept of Working Memory
Precisely what do we mean when invoking the concept of 

working memory? As this cognitive construct actually encom-
passes several mental operations, definitions of working  
memory tend to vary considerably (Dowker, 2005; Shah & 
Miyake, 1999). Furthermore, although this concept seems com-
paratively straightforward at one level, it turns out to be much 
more complicated at another. Such a view is shared by many, 

including Susan Pickering, a leading researcher in this field who 
acknowledged that “The concept of working memory is both 
reassuringly simple and frustratingly complex” (2006, p. xvi). 

As a consequence, it may prove instructive to present an 
example of how working memory can influence arithmetic 
problem solving before providing a definition. To begin with, 
consider the following quote taken from Lewis Carroll’s 
Through the Looking-Glass (1871) which Kaufman (2010) 
describes as “A working memory lapse in Wonderland”  
(p. 153): “‘And you do addition?’ the White Queen asked. 
‘What’s one and one and one and one and one and one  
and one and one and one and one?’ ‘I don’t know,’ said Alice, 
‘I lost count.’” 

Although it is doubtful that Alice’s failure to solve this prob-
lem is attributable to a mathematical learning disability, the 
example illustrates nicely some of the key components of work-
ing memory depicted in Figure 1. That is, in order not to lose 
count when attempting to solve such a problem, an individual 
would have to: a) focus attention on each new addend as it is 
presented, b) manipulate the information by mentally adding 
the “ones,” and at the same time, c) selectively maintain some 
of the information (in this case, the most recent prior sum) 

Continued on page 22

Working Memory Limitations in Mathematics 
Learning: Their Development, Assessment,  
and Remediation
by Daniel B. Berch

Figure 1. Graphic illustration of the defining features and com-
ponents of the working memory system. Reprinted from 
Working-Memory-and-Education – Introduction to Working 
Memory (WM), D. B. Berch, Retrieved November 17, 2010, 
from http://working-memory-and-education.wikispaces.com/ 
Introduction+to+Working+Memory+(WM). Copyright 2009 by 
Carren Tatton. Reprinted with permission. 



in temporary mental storage, and d) complete all of these tasks 
within the span of a few seconds. In other words, working 
memory is probably best defined as a limited capacity system 
responsible for temporarily storing, maintaining, and mentally 
manipulating information over brief time periods to serve other 
ongoing cognitive activities and operations. In essence, it con-
stitutes the mind’s workspace. 

Getting back to the White Queen’s arithmetic problem, 
while adding single digits should be comparatively easy for most 
typically achieving seven-and-a-half-year-olds (Alice’s age), it is 
evident from this example that one can excessively tax working 
memory by requiring a learner to simultaneously attend, store, 
and mentally process a rather large amount of information 
(albeit elementary in some sense) within a relatively short period 
of time. As Susan Gathercole, another leading researcher in this 
field has pointed out, overloading this fragile mental workspace 
can lead to “complete and catastrophic loss of information from 
working memory” (Gathercole, 2008, p. 382). 

. . . working memory is probably best 
defined as a limited capacity system 
responsible for temporarily storing, 

maintaining, and mentally manipulating 
information over brief time periods  

to serve other ongoing cognitive  
activities and operations. 

Obviously, no teacher would deliberately choose to over-
load his or her students’ working memory capacity. Nevertheless, 
mathematical information can sometimes be presented in a 
manner (e.g., orally or in textbooks) that inadvertently strains the 
processing capacity of students. Practitioners can learn to read-
ily avoid these situations if they are furnished with some basic 
information about the nature of working memory, its limitations, 
and the ways in which students can differ with respect to its 
constituent skills. Accordingly, the purpose of this article is to 
provide non-specialists with a succinct overview of the latest 
research on this topic, which I have organized in a way that I 
hope will shed light on some of the most important questions 
pertaining to the role of working memory in learning school 
mathematics, including: What are the ways in which working 
memory’s component skills can be measured? How do limita-
tions in working memory contribute to the development of 
mathematical learning difficulties and disabilities? And finally, 
what kinds of instructional interventions or remedial approaches 
are available for mitigating the detrimental effects of working 
memory limitations on mathematics achievement?

 How Are Working Memory Skills Measured?
Children’s working memory skills are customarily assessed 

with a variety of what are referred to as “simple” and “complex” 
span tasks. Simple span tasks are used to measure the  

short-term storage capacity of two types of domain-specific 
representations: verbal and visuospatial. To appraise the former, 
a reading or listening span measure is usually employed that 
entails the recall of word or number sequences; when assessing 
the latter, either the recall of random block-tapping sequences 
or randomly filled cells in a visual matrix or grid is typically 
required. 

In contrast, complex span tasks gauge domain-general, cen-
tral attentional resources by imposing substantial demands both 
on mental storage and processing (Holmes, Gathercole, & 
Dunning, 2010). As I have described elsewhere (Berch, 2008), 
a particularly representative example of such a measure is the 
Backward Digit Span task in which a random string of number 
words is spoken by the examiner (e.g., saying “seven, two, five, 
eight . . .”), and the child must try to repeat the sequence in 
reverse order. Note that rather than simply having to recall the 
numbers in the same forward order (which is considered a mea-
sure of the short-term, verbal storage component per se), the 
backward span task requires that the child both store and main-
tain the forward order (i.e., verbal component) of the number 
words while simultaneously having to mentally manipulate this 
information to accurately recite the original sequence in the 
opposite order. It is this dynamic coordination and control of 
attention combined with the storing and manipulation of infor-
mation in support of ongoing cognitive activities that I charac-
terized earlier as being the sine qua non of working memory.

To carry out a comprehensive assessment of children’s 
working memory capacities, most researchers currently  
make use of one of two standardized batteries—the Working  
Memory Test Battery for Children (Pickering & Gathercole, 
2001) or the Automated Working Memory Assessment  
(Alloway, 2007). As Holmes and her colleagues (2010) describe, 
each of these is comprised of several subtests, affording multi-
ple assessments of different facets of working memory (e.g., 
central attentional resources as well as verbal and visuospatial 
short-term storage components). Additionally, these batteries 
permit the identification of children with poor working memo-
ry for their chronological age, based on existing norms. 

Another technique for identifying children with poor  
working memory is derived from ratings provided by a  
child’s teacher, a prominent example being the Working 
Memory Rating Scale (Alloway, Gathercole, & Kirkwood, 
2008). This measure consists of approximately 20 statements of 
problem behaviors such as “She lost her place in a task with 
multiple steps” and “The child raised his hand but when called 
upon, he had forgotten his response.” Teachers rate how  
typical each of these behaviors is of a given child using a  
four-point scale. Although this technique affords a fast and  
efficient method for initial identification of working memory 
problems in a school setting (Holmes et al., 2010), it is proba-
bly best used as one component of a comprehensive evaluation 
by the school psychologist. Furthermore, if need be, teachers 
can choose to make supplementary, informal observations for  
guiding adjustments to their instructional approaches with  
particular children. 

22    Perspectives on Language and Literacy  Spring 2011 The International Dyslexia Association

Working Memory and Mathematics Learning  continued from page 21



The International Dyslexia Association Perspectives on Language and Literacy  Spring 2011    23

How Do Working Memory Limitations Contribute to 
Mathematical Learning Difficulties?

As noted earlier, measures of working memory are usually 
designed to assess one or more of three presumed subsystems 
comprising what is known as a multicomponent model:  
a domain-general, limited capacity central executive that  
governs the storage and temporary maintenance of information 
in two domain-specific representational subsystems—the  
phonological loop and visuospatial sketchpad—by means of 
attentional control (Baddeley, 1990, 1996; Baddeley & Hitch, 
1974). To date, the vast majority of investigations aimed at 
determining particular relationships between various working 
memory skills and mathematics learning or performance have 
been based on this model. 

Such relationships have been studied in children ranging 
from preschool age to adolescence, and for math skills extend-
ing from the very basic (e.g., numerical transcoding—writing 
an Arabic numeral in response to hearing a number word, 
counting, numerical magnitude comparison, and single-digit 
addition and subtraction) to more complex mathematical 
operations and content domains, such as multidigit arithmetic, 
rational numbers, and algebraic word problem solving. 
Furthermore, according to Raghubar, Barnes, and Hecht  
(2010), numerous other factors may influence and therefore 
complicate the interpretation of findings pertaining to the rela-
tions between working memory and math performance, includ-
ing but not limited to skill level, language of instruction, how 
math problems are presented, the type of math skill at issue, 
whether that skill is just being acquired or has already been 
mastered, the type of working memory task administered, and 
the kinds of strategies that different-aged children operating at 
diverse skill levels may employ for a given task. 

Consistent with this perspective, Geary and his colleagues 
(Meyer, Salimpoor, Wu, Geary, & Menon 2010) highlighted  
the importance of their findings that the contributions of  
particular components of working memory to individual  
differences in mathematics achievement can vary with grade 
level or the type of math content being assessed. More specifi-
cally, these researchers showed that the central executive and 
phonological loop play a more important role in facilitating 
mathematics performance for second graders, while the visuo-
spatial sketchpad does so for third graders. Furthermore, they 
provide a compelling argument that this grade-level difference 
is attributable to instruction and practice rather than a develop-
mental change in working memory capacity.

All this being said, earlier reviews of research on this topic 
(DeStefano & LeFevre, 2004; Swanson & Jerman, 2006) along 
with more recent ones (Geary, 2010; Raghubar et al., 2010) 
have yielded reasonably clear evidence of a generally strong 
association between working memory capacity and mathemat-
ics performance. Indeed, even the leading proponent of the 
view that the development of mathematical learning disabilities 
is attributable to a deficit in a domain-specific, inherited system 
for coding the number of objects in a set has recently acknowl-
edged that the domain-general, central executive functions of 
working memory are at the very least associated (i.e., correlat-
ed) with arithmetic learning and performance (Butterworth, 
2010). What is the nature of this relationship? As Geary (2010) 

concludes after reviewing the findings, the greater the capacity 
of the central executive, the better the performance both on 
cognitive mathematics tasks and math achievement tests (Bull, 
Espy, & Wiebe, 2008; Mazzocco & Kover, 2007; Passolunghi, 
Vercelloni, & Schadee, 2007). Furthermore, Geary notes that 
the phonological loop seems to be important for verbalizing 
numbers, as in counting (Krajewski & Schneider, 2009) and in 
solving math word problems (Swanson & Sachse-Lee, 2001). 

. . . factors (that) may influence . . . the 
relations between working memory and 
math performance (include) skill level, 

language of instruction, how math problems 
are presented, the type of math skill at issue, 
whether that skill is just being acquired or 

has already been mastered, the type of 
working memory task administered, and the 

kinds of strategies that different-aged 
children operating at diverse skill levels  

may employ for a given task.

Although studies have also shown that children with either 
math learning difficulties or disabilities exhibit deficits in all 
three working memory subsystems, Geary (2010) concludes 
that impairment in their central executive appears to be par-
ticularly troublesome (Bull, Johnston, & Roy, 1999; Swanson, 
1993). However, Geary also observes that the interpretation of 
these findings is complicated by the fact that at least three pur-
ported subcomponents of the central executive (i.e., inhibition, 
updating, and attention shifting) have been found to influence 
math learning in different ways (Bull & Scerif, 2001; Murphy, 
Mazzocco, Hanich, & Early, 2007; Passolunghi, Cornoldi, & De 
Liberto, 1999; Passolunghi & Siegel, 2004).

In summing up what researchers have learned about asso-
ciations between working memory and math learning disabili-
ties, Geary (2010) affirms that: “At this point, we can conclude 
that children with MLD have pervasive deficits across all of the 
working memory systems that have been assessed, but our 
understanding of the relations between specific components of 
working memory and specific mathematical cognition deficits 
is in its infancy” (p. 62). 

What Kinds of Interventions or Remedial Approaches Exist 
for Improving Working Memory?

In a review of techniques used to date for mitigating the  
difficulties encountered by children who have poor working 
memory, Holmes and her colleagues (2010) grouped these 
under three main approaches: 1) a classroom-based interven-
tion that consists of encouraging teachers to adapt their instruc-
tional approaches in ways that minimize working memory 
loads; 2) training designed to teach children to make use of 

Continued on page 24



memory strategies for improving the efficiency of working 
memory; and 3) training aimed directly at improving working 
memory through the use of an adaptive computerized program 
that involves repeated practice on working memory tasks. 

The classroom-based intervention is founded on a set of 
seven principles that originated from both classroom practice 
and cognitive theory (Gathercole, 2008) and are summarized 
in Table 1. Recently, a research team carried out an evaluation 
over a one-year period of two forms of this intervention  
aimed at primary school children with poor working memory 
(Elliott, Gathercole, Alloway, Holmes, & Kirkwood, 2010). 
Although there was no evidence that the intervention programs 
directly improved either working memory or academic perfor-
mance, the extent to which teachers implemented these  
seven principles was predictive of their students’ mathematical 
(and literacy) skills. Furthermore, teachers were reportedly  
very pleased about the ways in which the intervention had 
improved their own understanding and practice (which exem-
plifies the kind of mathematics knowledge enhancement that 
Dr. Murphy and her colleagues (this issue) promote for all 
teachers). Additional studies exploring how best to implement 
this kind of intervention are clearly warranted if we are to 
determine the optimal ways for practitioners to enhance chil-
dren’s mathematics achievement through the strengthening of 
working memory skills. 

With respect to the strategy training approach, the kinds of 
memory strategies children have been taught to use include 
repetitively rehearsing information, generating sentences from 
words or making up stories based on them, or creating visual 

images of the information (Holmes et al., 2010). Strategy train-
ing incorporating all of these techniques was recently adminis-
tered to children ranging in age from five to eight years old in 
two sessions per week over a six-to-eight-week period using a 
computerized adventure game (St. Clair-Thompson, Stevens, 
Hunt, & Bolder, 2010). Although training significantly enhanced 
both verbal short-term memory and working memory, there 
were no gains in visuospatial short-term memory. More relevant 
to the focus of this article, performance on a mental arithmetic 
task improved significantly. Furthermore, all of these gains 
were evidenced by children with poor working memory as  
well as those with average working memory. Nevertheless, no  
significant changes emerged on standardized assessments of 
arithmetic or other mathematical domains either immediately 
following training or five months afterward. 

. . . the extent to which teachers 
implemented these seven principles  
(of working memory intervention)  
was predictive of their students’ 

mathematical (and literacy) skills.

Finally, according to Holmes and her colleagues (2010), the 
most impressive gains in working memory obtained thus far 
have resulted from a direct training program developed origi-
nally for use with children with attention deficit hyperactivity 
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Principles Further Information

Recognize working memory failures Warning signs include recall, failure to follow instructions, place-keeping errors, and task 
abandonment

Monitor the child Look out for warning signs, and ask the child

Evaluate working memory loads Heavy loads caused by lengthy sequences, unfamiliar and meaningless content, and 
demanding mental processing activities

Reduce working memory loads Reduce the amount of material to be remembered, increase the meaningfulness and 
familiarity of the material, simplify mental processing, and restructure complex tasks

Repeat important information Repetition can be supplied by teachers or fellow pupils nominated as memory guides

Encourage use of memory aids These include wall charts and posters, useful spellings, personalized dictionaries, cubes, 
counters, abaci, Unifix blocks, number lines, multiplication grids, calculators, memory cards, 
audio recorders, and computer software

Develop the child’s own strategies These include asking for help, rehearsal, note-taking, use of long-term memory, and place-
keeping and organizational strategies

TABLE 1. Principles of the Classroom-Based Working Memory Approach

Note. Adapted from “Working memory in the classroom,” by S. E. Gathercole, 2008, The Psychologist, 21, 382–385. Copyright 2008 by The British 
Psychological Society. Adapted with permission.
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disorder (ADHD; Klingberg et al., 2005; Klingberg, Forssberg, 
& Westerberg, 2002). Children undergoing this intensive train-
ing regimen participate in a variety of computerized tasks 
designed to repeatedly tax their working memory capacity  
(i.e., requiring simultaneous storage and manipulation of infor-
mation) to the greatest extent possible without exceeding a 
level they can still manage effectively. This is achieved by 
matching the difficulty of each successive task to a child’s cur-
rent memory span on a trial-by-trial basis. Holmes, Gathercole, 
and Dunning (2009) administered this so-called adaptive train-
ing program to 9- and 10-year-olds with poor working memory 
skills in 20 training sessions, each 35 minutes long, over a 
period of five to seven weeks. Not only did the children exhib-
it sizeable improvements in verbal and visuospatial working 
memory, but six months later these gains had still not declined. 
And even though no gains were found on a standardized math-
ematics reasoning test immediately after training, a small but 
significant improvement emerged on the six-month follow-up 
assessment.

In sum, although these three types of interventions have 
been shown to improve working memory skills, evidence of 
their impact on academic performance in general and on math-
ematics abilities in particular is as yet rather limited (Holmes et 
al., 2010). However, it is our hope that continued study of ways 
to enhance such outcomes will yield stronger proof regarding 
whether such training can transfer to students’ mathematics 
performance. 

One final investigation is worth describing here, primarily 
because even though it was a cognitive laboratory study, it has 
important implications for improving classroom instruction. 
Briefly, this investigation revealed that although the working 
memory capacity of seven-year-olds is smaller than that of 
older children and adults, their attentional processes are just as 
efficient—so long as their smaller working memory capacity is 
not exceeded (Cowan, Morey, AuBuchon, Zwilling, & Gilchrist 
(2010). However, when their working memory is overloaded, 
attentional efficiency declines, suggesting that interventions 
aimed at enhancing working memory will in turn improve 
attentional efficiency. As these researchers put it, “In general, 
children’s attention to relevant information can be improved by 
minimizing irrelevant objects or information cluttering working 
memory” (p. 131). 

Conclusions
Taken together, the research reviewed in this article shows 

that we are making significant progress toward achieving a 
more complete understanding of the nature of working memo-
ry, its typical course of development, and the best methods for 
assessing its various features. We have also made important 
advances in discerning how working memory limitations and 
impairments can hinder the attainment of proficiency in math-
ematics, and we have just begun to explore the most promising 
strategies that can be implemented to enhance the working 
memory skills most relevant for improving students’ mathe-
matical learning and performance. Finally, I hope that the 
information provided here will be of some use to those of you 
who teach in identifying working memory limitations in your 
students, modifying the instructional environment to minimize 

extraneous or distracting information that might interfere with 
efficient selective attention, and designing strategies for enhanc-
ing your students’ working memory skills. 
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Though there are a number of reasons why students may have 
difficulty in mathematics at different points in development, 

one concern that can affect the learning of all students (regard-
less of whether they have a mathematics learning disability, or 
MLD) is a lack of conceptual understanding. The National 
Council of Teachers of Mathematics (2000) stresses the impor-
tance of conceptual understanding for learning in math and 
recommends alignment of facts and procedures with concepts 
to improve student learning. More recently, the National 
Mathematics Advisory Panel (2008) recommended helping stu-
dents master both concepts and skills and maintained that 
preparation for algebra requires simultaneous development of 
conceptual understanding and computational fluency, as well 
as cultivation of students’ skill at solving problems. As an indi-
cator of the level of emphasis placed on conceptual under-
standing, the final report of the National Mathematics Advisory 
Panel (2008) uses the words “concept” or “conceptual” 87 
times in 120 pages; in comparison, the word “procedure” or 
“procedural” is used fewer than 40 times. 

. . . procedural knowledge can be 
operationally defined as how to do 

something, and conceptual knowledge . . . 
allows one to understand why the  

procedure is appropriate for that task.

Thus, there is consistent recommendation that teachers 
focus on concepts in mathematics. But what does it mean to 
focus on concepts, and how can this be done in a way that 
develops students’ conceptual understanding without sacrific-
ing attention to required procedural skills? To accomplish this 
goal, teachers must first understand what conceptual and pro-
cedural knowledge are, how these forms of knowledge differ 
from each other, and the relations among the two types of 
knowledge. The following sections focus on the domain of 
algebra, discussing the definitions of conceptual and proce-
dural knowledge, describing some of the particular conceptual 
difficulties students tend to have and how these difficulties 
affect performance and learning, and presenting empirically-
based solutions for how to effectively address the issues of 
conceptual understanding in real-world classroom settings. 

Conceptual Versus Procedural Knowledge in Mathematics
Conceptual knowledge has been defined as “an integrated 

and functional grasp of mathematical ideas” (National Research 
Council, 2001, p. 118). Consistent with this and other research 
on learning in mathematics, conceptual knowledge can be 
viewed as recognizing and understanding the important  
principles or features of a domain as well as interrelations or 

connections between different pieces of knowledge in the 
domain (Hiebert & Wearne, 1996). In contrast, procedural 
knowledge is the ability to carry out a series of actions to solve 
a problem (Rittle-Johnson, Siegler, & Alibali, 2001). In short, 
procedural knowledge can be operationally defined as how to 
do something, and conceptual knowledge as an understanding 
of what features in the task mean; conceptual knowledge of 
those features collectively allows one to understand why the 
procedure is appropriate for that task. 

Though conceptual and procedural knowledge are often 
discussed as distinct entities, they do not develop indepen-
dently in mathematics and, in fact, lie on a continuum, which 
often makes them hard to distinguish (Star, 2005). This may be 
especially difficult in algebra, where many new procedures are 
taught over the course of the year (e.g., solving equations,  
factoring, graphing lines, etc.). Given the nature of the content 
in algebra courses, items designed to measure conceptual 
knowledge may have elements that resemble procedural tasks. 
However, the information extracted about students’ knowledge 
is not about their ability to carry out procedures. For example, 
one could give students the graph of a line and ask them to  
find the slope (procedural knowledge), or one could give stu-
dents the same graph and ask them how the slope would 
change if the x and y intercepts were reversed (conceptual 
knowledge). Similarly, one could provide a pair of fractions and 
ask students to add them (procedural knowledge), or one could 
ask students to compare the sizes of the fractions and think 
about what would happen if the numerators and denominators 
were reversed (conceptual). Furthermore, one could show stu-
dents an algebraic equation and ask them to solve it (proce-
dural knowledge), or one could ask whether that equation is 
equivalent (or has the same solution set) to another equation 
(conceptual knowledge). Thus, even with the same stimulus  
for a problem, one can acquire very different types of informa-
tion about what students know by the way that one asks the 
students to think about the problem.

Conceptual Difficulties in Algebra
For the past few decades, researchers in the fields of cogni-

tive development and mathematics education have maintained 
that students beginning algebra do not fully understand  
important concepts that teachers may expect them to have 
mastered from their elementary math and pre-algebra courses. 
Within the domain of equation solving alone, a number of 
concerning misconceptions have been identified, including 
that students believe that the equals sign is an indicator of 
operations to be performed (Baroody & Ginsburg, 1983),  
that negative signs represent only the subtraction operation and 
do not modify terms (Vlassis, 2004), that subtraction is com-
mutative (Warren, 2003), and that variables cannot take on 
multiple values (Knuth, Stephens, McNeil, & Alibali, 2006). 

Continued on page 32

Why Can’t Students Get the Concept of Math?
by Julie L. Booth



(See Figure 1 for examples of student misconceptions.) 
Unfortunately, for many students, these misconceptions persist 
even after traditional classroom instruction on the relevant 
topic (Booth, Koedinger, & Siegler, 2007). 

How do these strange conceptions develop, and why are 
they so persistent? One reason is that students who are strug-
gling in a domain may not see lessons in that content area the 
way the teacher intends (Wenger, 1987). In a recent study, 
beginning algebra students (12–14 years old) were given a 
reconstruction task to assess their encoding of presented equa-
tions (Booth & Davenport, in preparation). In this task, indi-
vidual equations were presented on a computer screen for 6 
seconds. After an equation disappeared, students were asked to 
reconstruct it on paper, and responses were coded for the  
number and types of mistakes that students made in their 
reconstruction. Results showed that students who have poor 
conceptual knowledge encode presented equations less effec-
tively than their high-knowledge peers. Further, students with 
misconceptions about specific features were most likely to 
make errors on those features. For example, consider the equa-
tion 4x = 9 + 7x – 6. Students who do not think that negative 
signs are attached to the terms they modify often make errors 
such as displacing a negative sign (4x = 9 – 7x + 6) or deleting 
the negative sign (4x = 9 + 7x + 6); students who hold miscon-
ceptions about the equals sign make errors such as moving the 
equals sign (4x + 9 + 7x = 6) or inserting an additional equals 
sign (4x = 9 = 7x + 6).

. . . one can acquire very different types  
of information about what students know  

by the way that one asks the students  
to think about (a math) problem.

Another reason is that these misconceptions may have been 
ingrained in students due to particularities in the nature of their 
arithmetic instruction (Baroody & Ginsburg, 1983). For exam-
ple, the misconception that the equals sign indicates where  
the answer goes is likely due, at least in part, to the way math 
facts and early addition problems are presented by teachers 
and in textbooks. Such problems are often presented vertically, 
with one number on top of the other, and then a solid line 
between the addends and the answer. When students are given 
horizontally presented problems, they are typically in a format 
such as 4 + 5 = 9, with numbers and operations appearing  
to the left side of the equals sign, and the answer (or a blank 
space for the answer) on the right side; students are rarely, if 
ever, exposed to other formats such as 9 = 4 + 5 (Seo & 
Ginsburg, 2003). McNeil (2008) found that even having stu-
dents practice simple arithmetic problems in the typical format 
(4 + 5 = 9) as opposed to non-standard presentations (28 = 28) 
increased failure at mathematical equivalence problems (e.g., 
3 + 5 + 6 = ___ + 6). Just imagine how much exposure to 

misleading problem formats students have gotten before they 
reach their Algebra 1 class, and how that might prompt them to 
approach algebraic equations!

The Danger of Misconceptions for Performance and 
Learning in Mathematics

As you might predict, these types of misconceptions are 
detrimental to students’ performance on equation-solving 
tasks: students who hold misconceptions about critical features 
in algebraic equations solve fewer problems correctly (Booth & 
Koedinger, 2008). Even more interesting, these misconceptions 
are associated with the use of particular, related, but incorrect 
strategies when students attempt to solve problems. For exam-
ple, students who do not think of negative signs as connected 
in any way to the subsequent numerical term often delete or 
move negatives within equations or subtract a term from both 
sides of the equation to eliminate the term even when the value 
in question is already negative; similarly, students who do not 
think of the equals sign as an indicator of balance between the 
terms on either side often delete or move the equals sign, or 
perform operations to only one side of the equation (Booth & 
Koedinger, 2008). 

More crucially, such misconceptions also hinder students’ 
learning of new material. Students who begin an equation-
solving lesson with misconceptions learn less from a typical 
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A) Equals 
Sign

B) Negative 
numbers

C) Variables/
Like 
Terms

In A), the student correctly names the equals sign, but then indicates that 
its only meaning is to show you where the answer goes. In B), the student 
correctly endorses items b and d, and correctly rejects a and e, but 
incorrectly endorses 4x – 3 as equivalent to -4x + 3. In C), the student 
indicates that combining any two of the terms is an acceptable first step, 
even though the terms given in a and b are not like terms (in both cases, 
one is a variable, and one is a constant). 

FIGURE 1. Student Misconceptions About Three Key 
Algebraic Concepts: A) The Equals Sign, B) Negative 
Numbers, and C) Variables and Like Terms



algebra lesson than students with more sound conceptual 
knowledge (Booth & Koedinger, 2008). Why might this be  
the case? One reason is highly related to abundant research  
in science education which demonstrates the importance of 
engaging and correcting students’ preconceptions about scien-
tific topics before presenting new information (Brown, 1992).  
If these preconceptions are not engaged, teachers are just 
attempting to pile more information on top of a flawed founda-
tion built on persistent misconceptions. In this case, students 
will not achieve full comprehension of the new material 
(Kendeou & van den Broek, 2005); rather, they may reject the 
new information that does not fit with their prior conception or 
try in vain to integrate the new information into their flawed or 
immature conceptions, resulting in a confused understanding 
of the content (Linn & Eylon, 2006). Further, recall that strug-
gling students may not correctly encode the features of the 
equations they are presented by their teacher and their textbook 
(e.g., Booth & Davenport, in preparation). How can students be 
expected to learn what the teacher intends if they are not  
correctly viewing, let alone interpreting, the instructional mate-
rials? Eliminating student misconceptions should be a critical 
goal for successful mathematics instruction, as discussed fur-
ther by Dr. Murphy and her colleagues elsewhere in this issue. 

Advantages of Strong Conceptual Knowledge for Learning 
in Mathematics

It is clear that reduction of misconceptions could have a 
great impact on student learning in mathematics, potentially 
allowing students to perform at a grade-appropriate level. 
However, eliminating misconceptions only takes students  
halfway toward the instructional goal of cultivating strong con-
ceptual understanding. 

Research in a wide variety of domains has identified a  
number of advantages of strong conceptual understanding, 
including having an easier time recalling new information  
(Chi, 1978), better categorization of new information (Chi, 
Feltovich, & Glaser, 1981), improved use and acquisition of 
problem-solving strategies (Gaultney, 1995), improved reason-
ing skills when interpreting new information (Gobbo & Chi, 
1986), and a greater likelihood of inferring information that 
was not explicitly present in the instruction (Chi, Hutchinson, 
& Robin, 1989). These advantages have been attributed to more 
focused attention to goal-relevant features when representing 
and solving problems (Chi et al., 1981), quick encoding of 
information which is easily stored in and retrieved from long-
term memory (Ericsson & Kintsch, 1995), and constraints on 
ranges of possible responses, leading to greater endorsement of 
reasonable incorrect responses rather than unreasonable ones 
(Ornstein, Merritt, Baker-Ward, Furtado, Gordon, & Principe, 
1998). In other words, students with strong conceptual knowl-
edge about a topic are likely to continue to learn more because 
their prior knowledge makes it easier for them to process and 
use new information related to that topic. 

Though not all of these advantages have been investigated 
within the domain of mathematics, there is evidence that strong 
conceptual understanding of mathematics concepts leads to 
greater learning in mathematics. For example, Griffin, Case, 
and Siegler (1994) found that providing low-income children 

with a strong knowledge base of mathematical fundamentals 
helped those children to learn early arithmetic; students with a 
stronger understanding of numerical systems are also able to 
learn more about arithmetic (Case & Okamoto, 1996). Similarly, 
stronger pretest conceptual knowledge in algebra predicted 
students’ learning to solve algebraic equations, above and 
beyond that predicted by more general math achievement 
(Booth & Koedinger, 2008). More research may be necessary to 
investigate the prevalence and nature of such advantages in 
math; however, it stands to reason that to give our students the 
best possible chance of success in mathematics, we must both 
eliminate student misconceptions and fill those gaps with a 
strong foundation in mathematical concepts. 

Cultivating Strong, Correct Conceptual Understanding in 
the Classroom

What is being suggested may seem like a tall order: Teachers 
need to target misconceptions and build up students’ concep-
tual knowledge, all while still providing students with enough 
instruction and practice on the wealth of procedural skills that 
are required components of the course and that will likely be 
targeted in standardized tests. With a limited amount of pre-
cious classroom time, how can teachers even hope to accom-
plish all of these goals? It would be nice if they were able to 
spend a day, or even a week of their algebra course on helping 
their students gain a deep understanding of the equals sign, but 
doing so would prevent getting to the lessons on quadratics at 
the end of the year. It is unlikely that school administrators and 
curriculum specialists would be amenable to this solution. Thus, 
teachers need clever ways of improving conceptual understand-
ing without sacrificing attention to procedural skills. 

. . . students with strong conceptual 
knowledge about a topic are likely  
to continue to learn more because  

their prior knowledge makes it easier  
for them to process and use new 
information related to that topic.

Fortunately, some such instructional techniques have already 
been identified by researchers in the domains of cognitive 
development and cognitive science. One combination which 
may be especially helpful is the use of worked examples with 
self-explanation prompts. Worked examples are just what they 
sound like—examples of problems worked out for students to 
consider, rather than for them to solve themselves (Sweller & 
Cooper, 1985). Replacing many of the problems in a practice 
session with examples of how to solve a problem leads to the 
same amount of procedural learning in less time (Zhu & Simon, 
1987), or increased learning and transfer of knowledge in the 
same amount of time (Paas, 1992). 

When studying worked examples, students should be 
prompted to explain them. Self-explanation facilitates students 
in integrating new information with what they already know, 

Continued on page 34
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and forces the learner to make their new knowledge explicit 
(Chi, 2000). Typically, students are shown a correct example 
and asked to explain why the solution is correct. However, 
explaining a combination of correct and incorrect examples 
(i.e., explain why a common incorrect strategy is wrong) can be 
even more beneficial than explaining correct examples alone 
(Siegler, 2002). Well-designed incorrect examples anticipate 
common misconceptions that students may hold that would 
make solving a particular type of problem difficult. For exam-
ple, students may have a strategy that is perfectly good for some 
problems (e.g., combine two terms by adding the numbers 
involved; 4x + 3x is 7x), but misconceptions about the nature 
of variable versus constant terms lead them to generalize this 
strategy to other problems where it is not appropriate (e.g., 4x 
+ 3 is not 7x). When students study and explain incorrect 
examples, they directly confront these faulty concepts and are 
less likely to acquire or maintain incorrect ways of thinking 
about problems (Siegler, 2002; Ohlsson, 1996). 

If the goal is improving conceptual understanding without 
harming development of correct procedures, the worked 
example/self-explanation approach meets that criterion. Many 
studies have established the benefits for procedural knowledge 
of worked examples (e.g., Sweller & Cooper, 1985; Zhu & 
Simon, 1987), and the benefits for conceptual understanding of 
self-explanation (e.g., Chi, 2000). Further, recent studies have 
shown that comparison and explanation of multiple correct 
examples (Rittle-Johnson & Star, 2009) or explanation of a com-
bination of correct and incorrect examples (Booth, Paré-
Blagoev, & Koedinger, 2010) can lead to both improved con-
ceptual and procedural knowledge. 

Despite their recommendation for instructional use by  
the U.S. Department of Education (Pashler et al., 2007), 
research-proven techniques (such as the worked example/ 
self-explanation approach), often fail to find their way into 
everyday classroom practices or textbooks. This may be 
because education stakeholders do not believe that they will be 
useful in real-world classrooms, or perhaps because they see 
them as incompatible with the setup of typical American class-
rooms. Greater collaboration between teachers, education 
researchers, and textbook publishers may be necessary for true 
change to occur. 

In the meantime, the policy makers are right: It is crucial 
that teachers focus on improving students’ conceptual under-
standing, as misconceptions and impoverished concepts put 
our students at an alarming disadvantage. But perhaps the  
best way to help students build a strong concept of math  
begins with helping teachers build a strong concept of what 
conceptual knowledge really is. Such a foundation should 
enable them to devise, implement, and evaluate possible 
instructional techniques for building strong conceptual knowl-
edge in the classroom.
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Early childhood and elementary educators are tasked with the 
responsibility of promoting student proficiency in mathemat-

ics (National Mathematics Advisory Panel (NMAP), 2008). 
Proficiency in this context means that “students should under-
stand key concepts, achieve automaticity as appropriate (e.g., 
with addition and subtraction facts), develop flexible, accurate, 
and automatic execution of the standard algorithms, and use 
these competencies to solve problems” (NMAP, 2008, p. 22). 
By this definition, proficiency requires instilling in students a 
conceptual understanding of the content (i.e., mathematical 
ideas) while simultaneously reinforcing procedures (i.e., stan-
dard algorithms for problem solving), as elaborated further by 
Julie Booth in this issue.

The responsibility of promoting student proficiency across a 
range of learners requires that teachers themselves be proficient 
in the mathematics content at their grade level, as well as at 
grade levels above and below their own (Common Core State 
Standards Initiative, 2010; NMAP, 2008). Teachers benefit from 
understanding how children think about mathematics (e.g., 
Carpenter, Fennema, Peterson, Chiang, & Loef, 1989) so that 
they are prepared to anticipate student misunderstandings, 
identify common student errors, provide accurate representa-
tions of concepts, reason about how students approach prob-
lem solving, and identify sources of individual differences in 
mathematics performance. The purpose of the present article is 
to discuss teachers’ knowledge of mathematics content, iden-
tify some of the mathematics content that is challenging for 
elementary educators and how such challenges might affect 
student learning, and provide research-based recommenda-
tions for how teachers can promote their own mathematics skill 
development and that of their students.

Teacher Knowledge of Mathematics Content
The NMAP (2008) sets completion of school algebra (i.e., all 

algebraic material through Algebra II) as the minimum aca-
demic goal for all students (p. xvii). To that end, the NMAP 
charges teachers in kindergarten through 8th grade (K–8) with 
ensuring student proficiency with the foundational skills of 
algebra, specifically whole numbers, fractions, and aspects of 
geometry and measurement central to algebra (e.g., properties 
of triangles, perimeter, area, volume, and surface area of 
shapes, determining unknown lengths, angles, and areas). Yet, 
these foundational skills of algebra and the hierarchical nature 
of content are areas of mathematics in which many elementary 
educators lack a strong conceptual understanding (Garet et  
al., 2010; Hill, Rowan, & Ball, 2005). For example, Ma (1999) 
found that fewer than half (43%) of teachers from the United 
States that she sampled correctly completed the problem  

1¾ ÷ ½, and none was able to adequately explain the reasons 
behind his or her calculation (p. 83; see Table 1). Among the 
misconceptions evidenced by these teachers was confusing 
division by ½ with division by 2 or multiplication by ½. 

Consistent with the results of Ma (1999) and others (e.g.,  
T. Post, Harel, Behr, & Lesh, 1988), we found that more than 
half of the 23 undergraduates enrolled in a mathematics course 
for elementary education majors at a women’s college in the 
mid-Atlantic region of the United States (most of whom were 
elementary education majors) had difficulty with aspects of 
basic mathematics, including performing mixed operations 
with fractions, ordering fractions and decimals, and converting 
from a mixed number to a decimal (Murphy, Sullivan, & 
Chaillou, 2011). These results were similar to the results of  
two groups of in-service elementary teachers, which suggests 
that conceptual difficulties with mathematics content are not  
necessarily resolved upon completion of teacher training 
(Murphy et al., 2011).

. . . the magnitude of the effect of  
teacher knowledge on student  
achievement is comparable to  

the effect of student characteristics,  
such as absence rate, race/ethnicity,  
gender, and socioeconomic status.

Although content areas (e.g., fractions) are especially chal-
lenging for many elementary educators, there is still wide  
variability in the extent to which educators possess a deep 
understanding of and comfort with mathematical content (Hill, 
2010; T. Post et al., 1988). Such individual differences in math-
ematics proficiency among educators may, in part, reflect a 
lack of consistent, clear, and rigorous standards for entry and 
exit of elementary education programs across the country as 
well as variability in the relevance, breadth, and depth of 
coursework required of elementary education teacher candi-
dates (Ma, 1999). For example, the National Council on 
Teacher Quality (NCTQ, 2008) reports that only 10 out of 77 
(13%) schools of education sampled across the United States 
had programs that provide coursework in content and methods  
that cover all topics essential for elementary educators  
(e.g., numbers and operations, algebra, geometry and measure-
ment, and data analysis and probability). Together, these  
findings support the notion that it is unlikely that elementary 
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education candidates will receive the instruction necessary to 
remediate their own conceptual misunderstandings during the 
course of their education program (Hill, 2007).

Strong teacher content knowledge of mathematics is  
necessary for effective teaching, but it is not sufficient  
(Ball, Hill, & Bass, 2005; Hill et al., 2008). Ball and colleagues 
introduced the term mathematics knowledge for teaching  
(Ball, 1990) to refer to the mix of content and pedagogical 
knowledge required to teach mathematics. Such knowledge 
encompasses a teacher’s ability to accurately and thoroughly 
explain terms and concepts, use appropriate examples and 
representations during instruction, interpret student responses, 
present topics in a logical sequence, and evaluate textbook 
content (Hill et al., 2005, p. 373). As discussed in the following 
section, teachers who possess robust mathematical know-
ledge for teaching generally demonstrate a higher quality of 
mathematics instruction than teachers who lack some or all 
aspects of this knowledge (Hill, 2010).

Advantages Associated with a Strong Teacher Knowledge 
of Mathematics 

Teacher knowledge of mathematics affects student out-
comes in mathematics (e.g., Carpenter et al., 1989; Ma, 1999). 
For example, as early as first and third grades, the mathemat-
ical content knowledge a teacher possesses predicts gains in 

student mathematics achievement scores on the TerraNova 
achievement test (Hill et al., 2005). This effect of teacher 
knowledge on student achievement exceeds that of teacher 
background (e.g., years of experience) and the amount of time 
spent on mathematics instruction (Hill et al., 2005). Moreover, 
the magnitude of the effect of teacher knowledge on student 
achievement is comparable to the effect of student characteris-
tics, such as absence rate, race/ethnicity, gender, and socioeco-
nomic status, on that achievement (Hill et al., 2005). 

One way in which a teacher’s knowledge affects student 
outcomes is via the quality of mathematical instruction itself 
(e.g., Borko et al., 1992; Fennema & Franke, 1992). Frequent 
mathematical errors (e.g., providing inaccurate or incomplete 
definitions) and poor mathematical choices (e.g., including  
lessons with minimal mathematics content) characterize  
the instruction of teachers with low mathematical knowledge 
(Hill et al., 2008; Putnam, Heaton, Prawat, & Remillard, 1992). 
At the same time, when a teacher’s knowledge of mathematics 
is high, instructional quality also tends to be high (Hill et al., 
2008). For example, Hill and colleagues (2008) found that 
scores on a measure of teacher mathematics knowledge for 
teaching were positively correlated with the frequency of 
appropriate responses to students (e.g., correctly interpreting 
student responses, querying student errors to understand the 

Continued on page 38

na Response Examples Accuracy

Computation Responses

9 3½ Correct

2 Correct algorithm; incomplete answer (answer not reduced)

4 “invert one of the fractions…I’m not sure” (p. 57); 
“you’d have to…change them in sync…cross 
multiply…You get 28/8?” (p.56)

Unclear about algorithm or procedure; incomplete answer

5 — Incomplete or inaccurate memory of algorithm, no response given

1 — Incorrect strategy, no response given

Representation Responses

0 how many one halves are in 1¾; use in a 
representation that produces a possible remainder 
(e.g., ½ of a mile)

Correct conceptual representation; appropriate pedagogical choice

1 how many one halves are in 1¾; use in a 
representation that produces an impossible 
remainder (e.g., ½ of a person)

Correct conceptual representation, poor pedagogical choice

6 Incorrect, no representation provided

16 Confusing division by ½ with division or 
multiplication by 2

Incorrect representation provided, misconception evident

TABLE 1. Summary of Results for Computation of and Representation for 1¾ ÷ ½ Among Teacher Respondents

14
4 or 28

8

Note. Table values for computation responses are based upon Knowing and teaching elementary mathematics: Teachers’ understanding of foundation 
mathematics in China and the United States (p.58), by L. Ma, 1999, Mahwah, NJ: Erlbaum Associates. Copyright 1999 by Taylor & Francis Group LLC – 
Books. Adapted with permission.
a n = number of respondents with given response; n = 21 teachers attempted the computation, n = 23 teachers attempted the representation.



student’s thought process), and negatively correlated with the 
number of linguistic errors (e.g., inappropriate use of mathe-
matical notation, inattention to the mathematical meaning of 
everyday terms such as table, plane, etc.), and number of  
nonlinguistic errors (e.g., computational errors, incomplete 
explanations). 

How Might Differences in Teacher Mathematics 
Knowledge for Teaching and Quality of Mathematics 
Instruction Affect Student Outcomes? 

Differentiated instruction, the practice of tailoring instruc-
tion and materials to each child’s specific learning needs (see 
Tomlinson, 1999), requires that a teacher adjust to individual 
differences in students’ prior knowledge and current under-
standing of mathematics to support students as they acquire 
greater proficiency. Ways to adapt instruction include, selecting 
appropriate examples, providing alternative explanations, and 
recognizing and remediating student misconceptions. To 
achieve this, the teacher must know not only the mathematics 
content, but also how students think about mathematics. Ball 
and colleagues (e.g., Ball, 1990; Hill et al., 2008) refer to this 
special type of mathematical knowledge of teaching as knowl-
edge of content and students. 

Educators with strong mathematical knowledge of content 
and their students’ mastery of that content may be more effective 
than their counterparts with weaker knowledge at identifying 
and remediating common misconceptions or problems that con-
tribute to poor mathematics performance among students, such 
as inaccurate or incomplete application of standard algorithms 
(Hill, Schilling, & Ball, 2004). Indeed, teachers with strong math-
ematical knowledge are quicker and more accurate in providing 
corrective feedback, make fewer mathematical errors, and use 
more precise mathematical language than teachers with weak 
mathematical knowledge (Hill et al., 2008). However, studies 
that focus on the relationship between teacher knowledge and 
student achievement in mathematics have not typically exam-
ined the effect of teacher knowledge as a function of student 
mathematics performance level (i.e., MLD, low achievement, 
typical achievement). Thus, it is unclear whether teacher math-
ematical knowledge for teaching differentially affects students 
with low versus higher mathematics achievement. 

What is known is that many children are at risk for poor 
mathematics performance due to environmental risk factors, 
such as low income or limited parental education (as reviewed 
by Jordan & Levine, 2009). Children from such environments 
may have limited opportunities to develop informal mathemat-
ics skills, such as counting and judging quantities, prior to 
entering kindergarten (as reviewed by Baroody, Bajwa, & 
Eiland, 2009; Jordan & Levine, 2009). These gaps in informal 
mathematics knowledge place these children at risk for diffi-
culty with formal mathematics skills, such as calculation, at 
later grades (Jordan, Kaplan, Olah, & Locuniak, 2006). Among 
these children, there is a need for teachers with strong mathe-
matical knowledge for teaching who can provide high quality 
mathematical instruction (Hill, 2010; Jordan & Levine, 2009). 

Yet, less mathematically knowledgeable teachers tend to be 
employed in school districts that serve low income communi-
ties (Hill, 2010). 

Similarly, a growing number of students enter school with 
limited English proficiency (Fry, 2007; National Center for 
Educational Statistics (NCES), 2006). These students may be at 
risk for weak mathematics performance due to environmental 
risk-factors (as discussed previously, Batalova, Fix, & Murray, 
2007) or complications associated with learning mathematics 
in their non-native language, such as needing to translate  
information back and forth between languages (Brown, 2005; 
Lager, 2006; Schleppegrell, 2007). As a result, English language 
learners may be especially sensitive to the quality of mathe-
matics instruction, particularly as it relates to the teacher’s  
frequency of linguistic errors (e.g., inappropriate use of math-
ematical notation, inattention to the mathematical meaning of 
everyday terms such as table, plane, etc). Moreover, many in-
service mathematics teachers lack appropriate training for 
teaching English language learners (NCES, 2002) and report 
feeling less competent working with these students than with 
their English-proficient peers (Ross, 2011). However, additional 
studies are needed to assess the relationship between teacher 
mathematical knowledge for teaching and mathematics out-
comes of English language learners.

. . . just like their students,  
teachers are likely to exhibit  

a profile of relative strengths and 
weaknesses (in mathematics).

When examining the quality of mathematics instruction and 
its effects on student outcomes, it is important to recognize that 
teachers may not be universally strong or poor at all mathe-
matic domains—rather, just like their students, teachers are 
likely to exhibit a profile of relative strengths and weaknesses. 
Consequently, teaching quality may vary within or across les-
sons or units, with a greater range of problem types and a 
higher degree of student-directed discussion of problem solving 
strategies associated with stronger content knowledge (e.g., 
Fennema & Franke, 1992, pp. 149-150). As such, it is the con-
sistency of high quality mathematics instruction that distin-
guishes teachers with strong knowledge of mathematics for 
teaching from those with less well-developed knowledge (Hill 
et al., 2008). Although all educators can benefit from ongoing 
professional development, it is this latter group of teachers for 
whom strengthening mathematical knowledge for teaching is 
most urgent.

Promoting Mathematical Skill Development: 
Recommendations for Teachers

Best intentions and beliefs about effective practices cannot 
overcome a lack of personal knowledge of mathematics (Ma, 
1999). The following are recommendations for teachers as to 
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how they can improve or refine their own mathematics knowl-
edge for teaching. 

Familiarize yourself with the mathematics taught at grade 
levels above and below your grade. Given the effect of teacher 
knowledge of mathematics on student achievement, the NMAP 
(2008) recommends that teachers “know in detail the mathe-
matical content they are responsible for teaching and its con-
nections to other important mathematics, both prior to and 
beyond the level they are assigned to teach” (p. 37). In this way, 
teachers can help students to see how mathematical ideas are 
related across grade level (e.g., connecting operations with 
fractions to those used with whole numbers), which is one of 
the Standards for School Mathematics set forth by the National 
Council of Teachers of Mathematics (NCTM, National Council 
of Teachers of Mathematics, 2000). 

Build your mathematics knowledge base. Most, if not all, 
teachers engage in some type of professional development 
(NCES, 2005). Yet, research evidence supporting the efficacy 
and quality of specific approaches to professional development 
and their effects on student learning are lacking (as reviewed by 
Hill, 2007; NMAP, 2008). Among the programs that have the 
greatest effects on teachers’ self-reported learning outcomes and 
subsequent teaching practice are those that focus on helping 
teachers learn subject-specific content (e.g. rational numbers, 
geometry, measurement), provide opportunities for teachers to 
actively engage with the content (e.g., reviewing student work, 
analyzing instructional examples), and are of long duration 
(e.g., high number of contact hours over prolonged period; 
Garet, Porter, Desimone, Birman, & Yoon, 2001). 

Another way to build mathematics knowledge for teaching 
is through “lesson study” (G. Post & Varoz, 2008) or “teaching 
research groups” (Ma, 1999, p. 136). These regular meeting 
times for teachers provide a forum in which teachers work col-
laboratively to enhance the quality of mathematics instruction. 
Specifically, weekly or monthly meetings provide a formal 
opportunity for teachers to discuss mathematics across the cur-
riculum, get feedback or guidance on approaches to teaching 
specific content, reflect on specific classroom experiences, 
review videotapes of mathematics lessons, or share student-
generated strategies (as reviewed by G. Post & Varoz, 2008). 
Although there is limited research-based evidence supporting 
the efficacy of such groups on instruction and subsequent  
student outcomes within the United States, these practices  
are commonly used in other countries, such as Japan and 
China (Ma, 1999, p. 136; G. Post & Varoz, 2008), where  
student achievement in mathematics exceeds that of the  
United States (Organization for Co-operation and Economic 
Development, 2010).

At an individual level, techniques, such as keeping a math-
ematics journal or videotaping mathematics lessons can be 
helpful (see Jacobs, Ambrose, Clement, & Brown, 2006; 
Wolhunter, Breyfogle, & McDuffie, 2010). For example, jour-
naling can be used to make notes at the end of class (or day)  
on specific mathematics lessons (e.g., suggestions for improve-
ments, student comments) or to build a repertoire of ideas 
related to instruction (e.g., useful metaphors or examples). 
Videotaping lessons provides the opportunity to look for visual 
clues of what students are thinking and understanding, appraise 

and reconsider responses to queries, and reflect on how the 
lesson could be taught better (Jacobs et al., 2006).

Seek mathematics-specific support. National mathematics 
organizations, in particular the National Council of Teachers of 
Mathematics (NCTM; www.nctm.org), issue publications spe-
cifically designed as professional resources for teachers. Among 
the publications are grade-level journals that provide specific 
instructional strategies, case studies, and topics for lesson stud-
ies. These publications provide an opportunity for teachers to 
connect with professionals in the field of mathematics instruc-
tion outside of their local school or district.

An additional source of mathematics-specific support avail-
able in some schools is the mathematics specialist or coach. 
Approximately 23% of schools are employing mathematics 
coaches and about 35% are employing mathematics specialists 
(NCES, 2009). The role of these “teacher-leaders” as defined by 
the NCTM (2000) is “assisting teachers in building their math-
ematical and pedagogical knowledge” (p. 375). Additional 
research-based evidence is needed to support the efficacy of 
specialist/coaches on the quality of classroom instruction (Hill, 
2010); however, many mathematics specialist/coaches are 
valuable resources for building content knowledge and improv-
ing the quality of mathematics instruction.

Conclusion
The responsibility of promoting students’ mathematics 

proficiency requires that teachers possess the content and 
pedagogical knowledge necessary for teaching mathematics. 
As both purveyors of knowledge and models of lifelong 
learning, it is critical that novice and experienced teachers 
work continually to strengthen their mathematics knowledge 
for teaching by seeking out or creating formal (e.g., ongoing 
professional development) and less formal (e.g., lesson studies) 
opportunities to engage in teaching and learning mathematics. 
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Much research on children who struggle with mathematics, 
including students with mathematics learning disability 

(MLD), is focused on cognitive skills required for success on 
mathematics tasks, such as number sense or computational  
fluency (as summarized by Michèle Mazzocco, this issue). 
Identifying these skills is essential to targeting educational  
supports. Yet a variety of noncognitive factors, such as affect 
and motivation, also play a critical role in children’s learning  
of mathematics (Royer & Walles, 2007). For example, some 
children who struggle with math demonstrate maladaptive  
patterns of motivational behavior, such as disengaging in  
mathematics instruction or demonstrating self-handicapping 
avoidance behaviors. While these behaviors often serve as a 
defense mechanism that protects one’s self image (Covington, 
1992), a lack of engagement during mathematics instruction 
can affect a child’s mathematics learning. Although engage-
ment and motivation can influence math learning for all chil-
dren, fostering adaptive motivational behaviors is essential for 
children who experience difficulty with mathematics.

Factors other than inherent ability  
influence how students approach  

classroom tasks, the types of strategies 
students use, and how students respond  

to academic successes or failures.

Although few educators would argue with the need for 
students to be motivated, many do not fully understand the 
complexity of achievement motivation (Anderman & Anderman, 
2010). Factors other than inherent ability influence how 
students approach classroom tasks, the types of strategies 
students use, and how students respond to academic successes 
or failures. Teachers can influence students’ achievement 
motivation and have the potential to help or hinder children’s 
mathematics learning. The intent of this article is to provide a 
brief introduction to the principles from the achievement 
motivation literature in order to assist educators with creating 
positive environments that facilitate learning by motivating 
students. Below, I first describe maladaptive motivational 
profiles that characterize some students who struggle with math 
and explore potential consequences of such behaviors. Then, I 
identify and describe five principles of achievement motivation 
that educators can apply to motivate students who struggle in 
math. These principles extend to all learners and cut across 
content areas; however, there may be particular value in their 
application to children who struggle with math. 

Maladaptive Motivational Profiles That May Characterize 
Children Who Struggle with Math

Madison is a third grade student in Mrs. Burkhardt’s 
classroom. For the last 15 minutes she has been doodling 
on the workbook page in front of her. Mrs. Burkhardt 
walks by and encourages her to try one of the story 
problems that she is supposed to be working on. “I 
can’t,” claims Madison, “I don’t understand it.” Mrs. 
Burkhardt goes through the problem step by step, check-
ing Madison’s understanding along the way. Together, 
they solve the problem correctly. “Try the next one on 
your own,” says Mrs. Burkhardt. “I don’t know how,” 
replies Madison. “But we just did one like this,” a frus-
trated Mrs. Burkhardt responds. “You helped me. I can’t 
do it on my own,” Madison insists. “But you knew which 
steps to use when we solved it together,” Mrs. Burkhardt 
argues. “I guessed,” replies Madison. Mrs. Burkhardt 
moves on to assist another student and Madison returns 
to her doodling. 

There are several possible cognitive and behavioral expla-
nations for Madison’s actions, including her perception that she 
lacks control over her mathematics success. It is possible that 
her self-perception is accurate—some children are aware of 
real limitations that prevent their success on a given task; or 
hers could be a false sense of futility resulting from experienc-
ing repeated failure. This learned helplessness leads to reliance 
on task-avoidant strategies such as disengagement. If students 
have low expectations for success on a task, they may be more 
likely to give up easily, attribute their failure to their lack of 
ability, and attribute their success to external factors, such as 
luck or ease of the task. 

Recognizing task-avoidant strategies in children who strug-
gle with math can help teachers respond appropriately to these 
maladaptive behaviors. However, teachers can gain additional 
insights into their students’ problems with math if they consider 
both cognitive and motivational variables that affect their stu-
dents’ academic performance and contribute to task-avoidant 
behaviors. For example, children with weak executive control 
or poor working memory may be less capable than their peers 
in handling some of the task demands associated with mathe-
matics, as described by Daniel Berch (this issue). As Dr. Berch 
suggests, it is possible to diminish working memory demands 
to enhance mathematics learning and performance of children 
with low working memory capacities. Still, it is important to 
recognize that repeated experiences of failure can interact  
with cognitive motivational variables, such as children’s belief 
systems. Cognitive competence and motivation are dynami-
cally related (Chapman, 1988; Royer & Walles, 2007), and 
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children’s belief systems in turn affect adaptive behaviors for 
mathematics learning. Ashcraft and Kirk (2001) found that chil-
dren who are highly anxious about mathematics showed longer 
response times and less accuracy on two-column addition 
problems that involved borrowing than children with lower 
levels of math anxiety. Although it is difficult to determine 
whether low mathematics performance precedes high mathe-
matics anxiety level, or vice versa, regardless of their causal 
relationship, it is imperative to examine motivational behav-
iors. 

Breaking the cycle of learned helpless behaviors is difficult, 
but important. If young children develop this pattern of behav-
ior early in their academic career, their beliefs often are  
reinforced over time and compounded by cognitive deficits 
associated with MLD. Teachers should help students under-
stand the effects of their attributions, especially when they have 
failed at a task. For example, student failure on tasks might be 
related to the selection of problem-solving strategies rather than 
an innate ability in mathematics. This type of message is par-
ticularly important for children with MLD, because they often 
use immature strategies relative to their typically achieving 
peers (Geary, 1990; Ostad, 1997, 1998; Russell & Ginsburg, 
1984). 

A relevant contributing factor to learned helplessness could 
be the social interactions with classroom teachers who unin-
tentionally communicate low expectations to students regard-
ing their mathematical abilities. Teachers who believe that 
mathematics is difficult and that some children lack the cogni-
tive competencies to be successful in mathematics may not 
fully understand the impact of such beliefs on their students’ 
achievement-related perceptions. Beliefs held by teachers 
about their students’ mathematical abilities may contribute to 
the development of a self-fulfilling prophecy. For example, 
Bielock, Gundeson, Ramirez, and Levine (2010) recently found 
that female teachers’ math anxiety affected first- and second-
grade girls’ mathematics achievement gains. At the end of the 
school year, girls with highly math-anxious teachers were more 
likely than boys and than girls with less math-anxious teachers 
to endorse the stereotype that boys are good at math and girls 
are good at reading. Also, the mathematics achievement of 
these girls was significantly lower than that of boys and of girls 
who did not endorse this stereotype. This suggests that teacher 
behavior can and does play a major role in student learning.

John is a fifth-grade student in Mr. Marshall’s class-
room. Although John is a skilled reader, he has struggled 
in math throughout most of elementary school. He has a 
test on fractions in his math class tomorrow. He knows 
that he needs to study for his test, but instead he spends 
the entire evening playing video games with his brother. 
When he fails the test the next day, he blames his failure 
on his time spent playing video games. A similar pattern 
of behavior has happened several times earlier this year. 
Mr. Marshall has become increasingly frustrated by 
John’s repeated lack of effort.

Like Madison, John is engaging in another form avoidance 
behavior, self-handicapping. Unlike learned helplessness, self-
handicapping is a proactive strategy that students use to  
influence others’ beliefs about their ability (Urdan, Ryan, 
Anderman, & Gheen, 2002). In these instances children’s likeli-
hood for success is usually diminished because they have 
engaged in behaviors that are counterproductive to the task at 
hand. Students who self-handicap often do so because they 
doubt their ability to perform adequately on academic tasks. To 
avoid the implication that he lacks ability in math, John blames 
his failure on something within his control, studying for the test. 
This allows him to maintain positive perceptions of his abilities, 
despite his concerns about his competence. It is unknown to 
what extent self-handicapping occurs in children with MLD. 

If students have low expectations for  
success on a task, they may be more likely  

to give up easily, attribute their failure  
to their lack of ability, and attribute  

their success to external factors, such as  
luck or ease of the task.

What can teachers do to assist students like Madison and 
John? In addition to their limited proficiencies in certain areas 
of mathematics, students who engage in unproductive motiva-
tional behaviors are likely to augment their problems in math. 
Explicit instruction with students who struggle with math has 
consistently shown positive effects on performance with word 
problems and computation (Gersten, Chard, Jayanthi, Baker, 
Morphy, & Flojo, 2009; National Mathematics Advisory Panel, 
2008; Powell, Fuchs, & Fuchs, this issue). However, given the 
interplay of cognition and motivation, teachers can supplement 
explicit strategy instruction with application of the following 
psychological principles to foster adaptive motivational behav-
iors in students who struggle with math. 

Principles of Achievement Motivation 
1) Promote mastery goals and minimize performance goals in 

the classroom. Achievement goal orientation refers to the 
way that students approach, respond to, and engage in 
achievement-related activities (Ames, 1992). Researchers 
have identified two goal orientations: mastery goals and 
performance goals. Mastery goals are characterized by an 
emphasis on mastering content, increasing knowledge, and 
developing competence. Behaviors associated with mastery 
goals include risk taking, utilization of sophisticated  
problem-solving strategies, adaptive help-seeking, and per-
severance. In contrast, performance goals are characterized 
by an emphasis on demonstrating competence and avoiding 
situations that have potential to reveal incompetence. 
Behaviors associated with performance goals include a 
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focus on grades and social comparison, selection of easy 
tasks that are likely to guarantee success, and utilization of 
shallow problem-solving strategies. 

Students’ achievement goals can be influenced by the 
way that teachers structure the classroom (Ames & Archer, 
1988). Instructional tasks, feedback and recognition prac-
tices, and assessment materials have an impact on children’s 
goal orientations, which in turn affect achievement-related 
behaviors. For example, Turner and her colleagues (Turner 
et al., 2002; Friedel, Cortina, Turner, & Midgley, 2007) 
found a relationship between children’s perceived goal 
structures of the classroom and their use of avoidance 
behaviors and coping strategies. Specifically, in classrooms 
where a performance goal orientation was salient (e.g., high 
demand for correct answers, but with little explanation or 
support for arriving at such), students were more likely to 
engage in avoidance behaviors or other unproductive 
behaviors. In classrooms where children perceived a  
mastery goal orientation (e.g., emphasis on understanding 
procedures and concepts as a means to arrive at correct 
answers), children were less likely to engage in avoidance 
behaviors. These findings illustrate the importance of creat-
ing classrooms that minimize performance goals over  
mastery goals without eliminating the importance of both 
procedural and conceptual learning (see Julie Booth’s arti-
cle, this issue). 

So how do teachers promote mastery goals over  
performance goals in the classroom? One way is to empha-
size the incremental nature of developing mathematical 
competence. If teachers send the message that success in 
mathematics is the result of self-regulated strategy use and 
persistence on challenging tasks, rather than the result of 
innate ability, children are more likely to attempt problems 
outside of their comfort zone and to respond adaptively fol-
lowing a failure situation. On the other hand, classrooms 
that emphasize public recognition of ability, promote feed-
back based on ability rather than effort, and that discourage 
educational risk-taking for fear of making errors, are likely 
to reinforce task-avoidant behaviors. By creating a class-
room where students can focus on the process of learning, 
rather than the product of performance, students are more 
likely to demonstrate positive motivational behaviors, such 
as engagement and resiliency.

2) Minimize social comparison and rewards based on perfor-
mance. Many educators are partial to the use of rewards as 
a motivating strategy, and research has identified several 
ways that rewards can be used effectively (see Anderman  
& Anderman, 2010, for a review). However, when used in 
ways that are inconsistent with research-based guidelines, 
rewards have the potential to foster task-avoidant behaviors 
(Deci, Koestner, & Ryan, 2001). This may be particularly 
true for children who struggle with math or have MLD. For 
example, in some elementary classrooms it is a common 
practice for students to complete “fast facts” worksheets, 
where students have to retrieve as many number combina-
tions as possible in a two-minute time period. At the end  
of this activity, the child with the highest score is often  

identified as the winner, and winners often receive a prize 
or have their name posted in the class as a form of recogni-
tion. Although practicing number combinations has impor-
tant benefits (see Sarah Powell and her colleague’s article, 
this issue), from a motivational perspective, there are sev-
eral problems with the reward structures used in this exam-
ple. First, if only one child is identified as the winner, it 
might create feelings of resentment among classmates. 
Second, it is likely that the same child (or one of a small 
subset of students), usually a high achiever, wins this activ-
ity multiple times. Third, the likelihood of a child with math-
ematics difficulties winning this activity is slim because 
deficits in retrieval of arithmetic combinations are a defin-
ing characteristic of these children (Hanich, Jordan, Kaplan, 
& Dick, 2001). Finally, when a reward is available for only 
a select group of children rather than the entire class, there 
is potential to foster avoidance behaviors among those who 
perceive their chances of winning as low (Deci et al., 2001). 
While most students are likely to make performance gains 
on math facts tasks over time, their gains are unlikely to 
elevate them to the position of “the winner.” 

In addition to practices that utilize rewards, those that 
foster social comparison can be equally as perilous for chil-
dren who struggle with math. Consider that many teachers 
have classroom charts that identify the level of the multipli-
cation table facts that students have mastered. While moti-
vating to students who are at the top of the chart, students 
who struggle with math might find this practice embarrass-
ing because it draws attention to their low performance. 
Many children would prefer to be seen as “bad” rather than 
“dumb,” so it is not uncommon for children who struggle 
with math to engage in task-avoidant behaviors when social 
comparison is prominent.

Although automaticity with number combinations is an 
important skill for developing mathematical competence, 
the types of reward-based practices exemplified above have 
the potential to foster negative achievement-related behav-
iors. There are other ways that this essential skill can be 
monitored without fostering social comparison among  
students. Teachers can still administer “fast fact” sheets to 
monitor student skill level, but base recognition on indi-
vidual student improvement and progress. Feedback about 
performance should be kept private and children encour-
aged to focus on self-set standards rather than normative 
standards. Finally, effort and persistence should be recog-
nized and appropriately reinforced.

3) Help students understand the effect of negative attribu-
tions. Attributions are causal explanations that children 
make to explain their academic successes or failures 
(Weiner, 1986). Consider the student who has experienced 
repeated failures in mathematics. When probed about the 
causes of such failures, the child states, “I’m not good at 
math. No one in my family is good at math.” This attribution 
identifies inherent ability as the underlying cause of  
mathematical performance. If children believe that their 
mathematical failures are due to lack of ability, something 
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outside of their control, they could be less likely to engage 
in similar tasks in the future since they believe it is likely 
that the outcome will be the same. However, if children 
believe that their mathematical failures are due to limited 
effort or poor strategy selection, things that are within their 
control, the likelihood that they engage in future tasks is 
high if the outcome has the potential to change. 

To help students replace dysfunctional attributions with 
facilitative ones, teachers should foster attributions that 
emphasize effort, strategy use, and persistence, over ability 
(National Mathematics Advisory Panel, 2008). All of these 
attributions promote an internal locus of control, in which 
children perceive themselves as active agents of their learn-
ing, rather than passive recipients of external forces (Pashler, 
McDaniel, Rohrer, & Bjork, 2008). Additionally, teachers 
need to be aware of the unintended mixed messages they 
send to students, which affect the types of attributions that 
students make about themselves. For example, a teacher 
might not question making references to how “smart” chil-
dren are. However, this attribution is likely to focus children 
on ability as the cause for their success, rather than effort. 
While this may not seem counterproductive to children’s 
developing self-concepts, imagine the inverse attribution in 
a failure situation. Being “dumb” not only has a negative 
impact on a student’s academic self-concept, but ability 
attributions tend to be relatively stable across time. Thus, 
stable, external attributions of failure often are outside of 
children’s control, which has consequences for future 
behaviors. Finally, teachers need to continually battle the 
erroneous idea that mathematical competence is largely a 
matter of inherent ability, not effort and convey this message 
to students in their own instructional practices. 

4) Teach students appropriate self-regulated learning strate-
gies. Self-regulation strategies include self-instruction, self-
questioning, self-monitoring, and self-assessment. These 
metacognitive functions are critical for children’s academic 
success. Research has indicated that children with MLD are 
less accurate at evaluating correct and incorrect solutions, 
and are less accurate at predicting which problems they can 
solve correctly, than children without MLD (Garrett, 
Mazzocco, & Baker, 2006). While intervention studies that 
use self-regulation strategy instruction to improve mathe-
matics performance have not been conducted specifically 
on the MLD population, several researchers have reported 
positive effects in populations of students with general 
learning disabilities (LD). Jitendra and her colleagues 
(Jitendra, Griffin, McGoesy, Gardill, Bhat, & Riley, 1998; 
Jitendra & Hoff, 1996) reported an increase in mathematical 
problem solving in elementary school students with LD 
using schema based instruction, which teaches students to 
categorize word problems into different types and then 
implement the appropriate strategy. Similarly, Sarah Powell 
and her colleagues (this issue) demonstrated that promoting 
strategy use improved number combination skills in third 

graders with math difficulties, and Montague (Montague, 
1992; Montague, Applegate, & Marquard, 1993) found a 
significant improvement in problem-solving performance 
among older middle school students using Solve It! Common 
features across these interventions include an emphasis on 
student monitored problem-solving performances by using 
a variety of self-regulated learning strategies, which are first 
modeled by the teacher and then taught to children.  
The goal is that children will acquire and internalize strate-
gies and apply them independently to guide mathematical 
performance. 

Self-regulated learning strategies are important because 
in addition to guiding children’s performance, they also 
have an impact on children’s self-efficacy judgments.  
Self-efficacy refers to an individual’s domain specific judg-
ments about their capability to perform a task (Bandura, 
1986; Pajares, 1996). As children experience success in 
mathematics, their self-efficacy is likely to increase. Higher 
self-efficacy is likely to contribute to a host of adaptive moti-
vational behaviors including engagement, perseverance, 
and appropriate strategy use (Pajares, 1996). To assist  
students in developing self-regulated learning strategies, 
teachers need to model the appropriate strategies for stu-
dents in addition to developing instructional activities that 
promote independent and strategic learning. Once children 
are provided with a variety of strategies that can be utilized 
on specific tasks, teachers can provide specific feedback 
about how and when to apply strategies. Finally, teachers 
can provide specific feedback about the outcome of the 
strategy application, noting what contributed to children’s 
success or failure on the task. 

5) Model your own value of mathematics. Despite the fact  
that some teachers do not enjoy teaching mathematics or 
their enjoyment of teaching mathematics is not consistent 
(Stipek, Givvin, Salmon, & MacGyyers, 2001), it is impor-
tant that teachers model their own value of mathematics. 
Communicating the value of learning mathematics can help 
students internalize their own positive beliefs about mathe-
matics. As mentioned earlier in this article, Beilock et al. 
(2010) found teachers’ math anxiety had consequences for 
girls’ math achievement by influencing the girls’ beliefs 
about who is good at math. If students think they are  
capable of succeeding on a task and perceive the task as 
having value, they are more likely to attempt it (Wigfield  
& Eccles, 2000). However, if children believe that they are  
not capable of success, or if they see little value in the task, 
they may avoid it. 

Teachers’ knowledge of mathematics may affect their 
own enthusiasm for the discipline, which can improve the 
quality of their mathematics instruction (as discussed by Dr. 
Murphy and her colleagues, this issue). To help students  
also see the value of learning mathematics, teachers are 
encouraged to reflect on the design and implementation  
of instructional activities in mathematics and to monitor  
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their communication about the importance and relevance  
of mathematics. Questions for reflection include the  
following: 

students to learn and for me to teach? 

mathematics learning among my students? 

effort and ability in learning? 

importance and value of mathematics to students? 

Conclusion
The principles identified above are supported by educa-

tional and psychological research within the field of achieve-
ment motivation. All of these principles can be extended to a 
larger student population; however, for the purposes of this 
article I have targeted principles that are most applicable for 
teaching children who struggle with math, including children 
with MLD. Teachers are cautioned that these principles are not 
infallible and there are other important variables, such as 
developmental differences, group and individual differences, 
and differences in the learning contexts that shape and influ-
ence children’s motivation, as reported in this issue. Because of 
the unique characteristics of children with MLD (e.g., cognitive 

teachers will want to reflect on the application of these motiva-
tional principles, adapting as necessary to students’ individual 
characteristics and unique classroom environments. It is my 
hope that research on children who struggle with math or have 
MLD will continue to incorporate cognitive-motivational fac-
tors into systematic investigations of mathematics achievement 
that will provide educators strategies and recommendations to 
improve classroom instruction of mathematics. 
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Why do some students have difficulty with mathematics, 
and how often do these difficulties indicate a mathemat-

ical learning disability (MLD; a term used here as synonymous 
with dyscalculia)? How early can we identify which children 
are at risk for poor mathematics outcomes? These are the ques-
tions that motivated a research program through which my 
colleagues and I studied early cognitive predictors of mathe-
matics achievement. During a conference presentation on 
some of our findings, members of the audience challenged our 
focus on cognition, arguing in favor of studying influences that 
they emphasized could be controlled, namely curriculum and 
instruction. In partial support of these protests, this special issue 
of Perspectives on Language and Literacy illustrates many pos-
sible sources of mathematics difficulties, including external 
sources that are not attributable solely to characteristics of the 
struggling learners themselves. Instructional content, instruc-
tional quality, and teachers’ knowledge of content and learn-
ing, are some of the external factors addressed by the authors 
of the preceding articles in this issue. An awareness of these 
factors reminds us to evaluate children in context—as learners 
in classrooms or other learning environments—when determin-
ing possible sources of their learning difficulties. 

However, the importance of external factors does not dimin-
ish the significant impact that child characteristics, including 
cognitive abilities, also have on mathematical learning. As the 
other articles in this issue reveal, cognitive skills may interact 
with external influences, but they may also be more directly 
tied to mathematical difficulties even when learning environ-
ments themselves are optimal. Several cognitive characteristics 
are relevant to mathematical learning. In this article, I focus on 
abilities that specifically concern understanding and using 
numbers to describe why children’s number skills matter to 
mathematics, and why they should matter to educators.

Children’s Sense of Number
Although number alone does not define mathematics, 

understanding number is essential to the mathematics we learn 
in school. Why, then, is the role of number often minimized or 
ignored when seeking explanations for children’s mathematical 
difficulties? Perhaps skills related to number appear insignifi-
cant amidst the many alternative explanations for mathematics 
difficulties—as aforementioned. Moreover, our ability to under-
stand number may be perceived as too simplistic to affect  
performance on complex mathematics. Regardless of whether 
number skills are considered easy or challenging, many per-
sons believe that a knack for numbers cannot be changed 
simply because of its inherent nature. Of course, each of these 
premises is false. A sense of number does play a significant  
role in mathematical learning, in addition to other factors. 
Allegedly “simple” number skills are comprised of complex 
functions, as I describe below. Even if ability levels for some 
number skills are difficult to improve (if that proves to be the 

case), an awareness of the cognitive skills that mediate mathe-
matics learning and performance can guide instructional  
decisions and strategies. Finally, inherent skills are subject to 
change, despite the enduring myth that they are immutable 
(Sternberg & Grigorenko, 1999). Misconceptions that portray 
number skills as insignificant or unchangeable prevent educa-
tors and parents from recognizing just how much number  
matters to a child’s mathematical learning. 

Misconceptions that portray number skills  
as insignificant or unchangeable prevent 
educators and parents from recognizing  

just how much number matters to  
a child’s mathematical learning.

 A child’s awareness and comprehension of numbers is often 
referred to as “number sense.” Individual definitions of number 
sense vary in their specificity or breadth of focus (see Berch, 
2005 for a review), as is also true for definitions of mathemati-
cal learning disability (MLD) or math difficulties (MD) (as 
briefly discussed in the “Theme Editor’s Summary”). Dehaene 
(1997) refers to number sense as, “a direct intuition of what 
numbers mean,” citing Dantzig’s 1954 introduction of the term 
to describe a “faculty” that permits someone to recognize that 
the quantity of a collection has changed without direct knowl-
edge of that change. Dantzig’s description pertains to the 
essence of quantity per se, rather than to symbols that represent 
quantities via spoken or written words (e.g., three and eight) or 
numerals (e.g., 3 or 8). Some cognitive scientists are seeking to 
further delineate components of number sense, to identify how 
these components change as children develop, if these com-
ponents are prone to individual differences, and if they are 
essential for achievement in mathematics.

Components of Number Sense
Several components of number sense have been described 

to date, although many have not been studied relative to math-
ematical difficulties. Here I review only a few components, to 
illustrate the range of skills involved in number sense. 

Number skills can be differentiated according to whether 
quantities are represented nonsymbolically (sets of items, as in 
Dantzig’s description) or symbolically (e.g., numerals). 
Nonsymbolic tasks may involve, for example, judging which  
of two arrays of items is more numerous without counting. For 
instance, you can readily judge that the paragraph you are now 
reading has more words than the immediately preceding para-
graph, without knowing how many words appear in either. 
Likewise, if asked to judge which of two words has more letters, 
you can quite readily determine that there are more letters in 

Continued on page 48
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the word mathematics than in the word science. Moreover,  
your judgment is likely to remain accurate even if the words 
science and mathematics both cover comparable lengths of hori-
zontal space within text, and even when the “smaller” word 
(science) is physically larger. This ability to nonverbally perceive 
and represent quantity is observed in infants and preschoolers, 
and even non-human animals. It is described as informal, or 
unlearned, and appears to be innate. It generalizes to non-
visual stimuli, so it is not simply an artefact of visual perception. 
(See Feigenson, Dehaene, & Spelke, 2004, for a review). 

The early emergence of this type of number sense suggests 
(inaccurately) that all children will have an adequate number 
sense by the time they begin kindergarten. Although this may 
be true for many children, basic nonsymbolic skills improve 
with development before and well beyond kindergarten (e.g., 
Halberda & Feigenson, 2008), with performance accuracy lev-
els varying even among high school students. But do these 
skills matter? The evidence suggests that they do. Performance 
on these basic informal skills predicts primary and high school 
mathematics achievement (e.g., de Smedt, Verschaffel, & 
Ghesquiere, 2009; Halberda, Mazzocco, & Feigenson, 2008). 
However, “number sense” predictors also include formal sym-
bolic skills that are the target of early instruction.

Symbolic skills are learned, and there is much to learn 
about them. For instance, we learn that symbols are associated 
with their nonsymbolic referents, such that the symbols 5 and 
five  

school mathematics, it may build upon the informal sense of 
number that children establish prior to schooling through their 
daily interaction with the environment. As straightforward as 
this association may appear to adults, there is a developmental 
time course when these associations form and become auto-
matic. Within age groups, there are individual differences in 
both accuracy and automaticity. This means, for instance, that 
a child who has difficulty quickly identifying that there are five 

other skills, including accurately representing the quantity of 
five dots, forming an accurate association between the quan-
tity and its corresponding symbol (five or 5), or retrieving an  
association that is accurately established. 

 When evaluated in children (or adults), these and other 
types of number sense skills are often measured as automatic 
skills, typically too subtle to be observed casually. However, 
recent findings suggest that individual differences in math per-
formance among typically achieving students (those who do 
not have MLD, but who nonetheless present with a wide range 
of achievement levels) are related to intentional processing of 
numerals (e.g., Bugden & Ansari, 2011). This introduces anoth-
er level of complexity in differentiating effortful or deliberate 
versus automatic skills. The more deliberate and more effortful 
that a task becomes, the more it is potentially subject to other 
cognitive skills. 

In other words, the effects of number are not absolute; they 
interact with effects of other cognitive characteristics. For 
example, Jordan (2007) has shown that children who have  

difficulties in both mathematics and reading have weaker  
performance on tests of approximate calculations, such as 
determining if the solution to 9 + 7 is closer to 20 or 40, relative 
to children with mathematical difficulties only. (Both groups 
perform more poorly on this task than their typically achieving 
peers.) However, these two groups of children with MD have 
comparable levels of performance on measures of exact math-
ematics calculation, such as determining the precise solution to 
9 + 7, both performing more poorly than their typically achiev-
ing peers. Thus, number sense difficulties in children with MD 
vary depending on children’s reading abilities (See Jordan, 
2007, for a review.) 

Why do these number skills matter? They exemplify that at 
least some components of number sense seem very intuitive, 
and that children differ in the ease with which they process 
these aspects of number. A sense of number at this level does 
not emerge simply from being told the properties of number. 
However, the term number sense is sometimes used to refer to 
skills that are explicitly taught, as indicated in the following 
excerpt from the National Mathematics Advisory Panel (NMAP) 
final report (2008, p. 27):

A more advanced type of number sense that children 
must acquire through formal instruction requires a prin-
cipled understanding of place value, of how whole 
numbers can be composed and decomposed, and of the 
meaning of the basic arithmetic operations of addition, 
subtraction, multiplication, and division. It also requires 
understanding the commutative, associative, and dis-
tributive properties and knowing how to apply these 
principles to solve problems.

Unlike the previously described basic number sense skills, 
the skills referred to in this definition reflect cognitive charac-
teristics that are not necessarily limited to numerical tasks 
alone. Rather, they include general cognitive skills (e.g., work-
ing memory) that affect learning across domains, including 
reading comprehension and writing. One can speculate that 
both basic and general skills influence mathematics perform-
ance on tasks such as number combinations and algebra, that 
both have a role in procedural and conceptual learning, that 
both affect student engagement, and that knowledge of these 
diverse skills may affect how teachers adapt instruction for 
individual students across all achievement levels. 

It can be difficult to differentiate numerically specific versus 
general cognitive contributions to a child’s mathematical diffi-
culties. To solve problems such as 7+14 or √27, a child must 
know and recall what the number symbols mean, what compu-
tational procedures to use, and how to execute the procedures 
correctly. Knowing why these procedures are executed offers 
additional benefits, but this computational knowledge and recall 
can occur with varying degrees of understanding or efficiency. 
Once solutions are learned, stored facts may be retrieved from 
memory or via other routes (e.g., LeFevre et al., 1996), or backup 
strategies may be used (as discussed by Sara Powell and her col-
leagues in this issue). A solution can be calculated by counting 
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up (see Powell, this issue) from either 7 or 14; the counting may 
occur with or without using fingers or tally marks. Alternatively, 
a child may decompose 14 into 7 and 7, which when combined 
with the first addend (another 7), is solved as 3×7=21. When 
decomposing number, a child may rely on procedural or con-
ceptual knowledge and on automatic or more effortful processes. 
Cognitive processes might vary if the tasks require finding an 
approximate versus exact solution or if the tasks occur under 
timed versus untimed conditions. The child’s processes may even 
vary depending on whether the problem is presented horizon-
tally or vertically. Moreover, problem solving strategy choices 
vary with age and within individuals at a given point in time. 
Sometimes, individuals are not aware of the skills they are using. 
This adds to the existing challenges in identifying which specific 
skills underlie mathematical difficulties for a given child. 

Among the many possible skills that support or hinder math-
ematical learning, some of these skills, including number sense 
related skills, can be improved during early childhood. 
Research in this area is ongoing. Much of the research demon-
strating success of number sense interventions has been con-
ducted with children from low income households, in which 
case poor number skills may be linked to low numeracy 
environments. In these instances, even small improvements in 
a child’s environment can make a difference. Siegler and his 
colleagues have shown that preschoolers’ representation of 
numbers on a mental number line improves after playing a 
numerical board game just a few times per week. The pre-
schoolers’ performance also improves on number recognition 
and numerical comparison tasks (Siegler, 2009). Not surpris-
ingly, the amount and type of numerically oriented activities in 
the child’s home is related to children’s math and number skills 
at the onset of schooling (Blevins-Knabe, 2008). 

Why do these interventions matter? Because number skills 
support learning school mathematics, and because number dif-
ficulties will not simply disappear with time. Indeed, poor 
mathematics knowledge is present in adults, including teachers 
(see Murphy et al., this issue). Poor number sense in adults 
hinders skills we rely on for occupational, leisure, and daily 
activities, ranging from engineering to carpentry, sports to card 
playing, healthcare risk assessments to financial decision mak-
ing (see McCloskey, 2007, for a review). Thus, number inter-
ventions matter, because, throughout life, number matters. 

Number Sense Skills in Children with MLD
In view of the many cognitive skills involved in mathematics, 

it is no wonder that no single core deficit has been identified  
for mathematics learning disabilities (MLD), and it is possible 
that no single best predictor of mathematical difficulties (MD) 
will ever emerge. Until core deficits are identified, achievement 
levels will probably continue to be used in research as proxies of 
MLD or MD. In earlier research, MLD and MD were rarely dif-
ferentiated from each other. Whether the term MD or MLD was 
used, classification was often based on relatively high math 
achievement cutoff scores (e.g., at or above the 25th percentile). 
This practice resulted in unintentionally combining groups of 
individuals whose difficulties stem from different causes. We and 
others have since found important differences between children 
who meet stricter criteria for MLD (e.g., performing at or below 
the 10th percentile) versus those who meet more lenient criteria 

(e.g., performing within the 11th to 25th percentile (e.g., Murphy, 
Mazzocco, Hanich, & Early, 2007). Many now refer to these 
groups as students with MLD or Low Achievement in mathemat-
ics, respectively (e.g., Geary et al., 2007). In studies, each of 
these groups is usually also compared to a group of students who 
have age- and grade-appropriate mathematics achievement. In 
this way, we move closer to differentiating children with MLD 
from other children with other sources of math difficulty.

Number sense skills are among the many cognitive variables 
that differentiate children with MLD from those with low math 
achievement. For instance, children with MLD have signifi-
cantly weaker performance than their typically achieving peers 
on measures of basic, automatic nonsymbolic number sense 
(e.g., selecting which of two sets of items is more numerous, 
without counting) and on tasks that measure associations 
between quantities and verbal labels. Importantly, children with 
MLD perform more poorly on these intuitive tasks than children 
with low math achievement. In contrast, children with low math 
achievement are indistinguishable from their peers on these 
tasks (Mazzocco, Feigenson, & Halberda, 2011), which suggests 
that their math difficulties emerge for other reasons—including 
(potentially) other cognitive skills. Still, this finding does not 
mean that children with low math achievement necessarily have 
intact number sense overall, because, as reviewed thus far, there 
are many components of number sense. 

Summary
Mathematics relies in part on a sense of number, or quan-

tity. If we take these basic skills for granted, we may miss the 
very foundation of some children’s mathematical difficulties. 
Why shouldn’t there be individual differences in how readily 
we perceive and process number, or how readily we form asso-
ciations between quantities and formal symbols? Decades of 
research on dyslexia has shown us that there are individual dif-
ferences in how readily children process the building blocks of 
language. The same may well be true for children with dyscal-
culia, or MLD.

Difficulties in the most basic, inherent aspects of number 
sense are not the cause of all mathematical difficulties. As this 
special issue of Perspectives on Language and Literacy demon-
strates, mathematical difficulties may be attributable to other 
child characteristics associated with cognition (such as working 
memory), psychosocial function (e.g., mathematics anxiety, self 
handicapping behaviors, etc.), or behavior (e.g., engagement); 
it may result from compromised learning opportunities, or 
some combination of these factors. Formal aspects of number 
sense appear weak in children whose mathematics difficulties 
are linked to impoverished learning environments, but it is 
unknown if or how this influences the more intuitive aspects of 
number sense. Does the type of number sense difficulty matter? 
It may, because intervention needs might differ depending on 
which components are deficient. As Dr. Berch emphasized 
earlier in this issue, teachers can make observations to guide 
adjustments to their instructions for individual children. 
Knowledge of the importance and complexity of number sense 
may enhance teachers’ observations of this aspect of their stu-
dents’ math performance.

Continued on page 50



Conclusion
To revisit the questions that appear at the beginning of this 

article, why do some students have difficulty with mathemat-
ics? The reasons stem from characteristics of students, teachers, 
and learning environments discussed in this special issue and 
many more that were not addressed herein but that are worthy 
of attention. Additional child characteristics not explored in  
this issue include (but are not limited to) language (e.g., the 
language the child speaks, whether the child is monolingual or 
bilingual, if the child is not fluent in the language of instruc-
tion), spatial skills, and the presence of a comorbid disability in 
another area (e.g., attention or anxiety disorder, etc.), to name 
a few. Additional influences on the child’s learning environ-
ment are not limited to the classroom; they include the school 
and school district, but also the home and the child’s larger 
community. In summary, there are many reasons why children 
may have difficulty with mathematics. 

How often are these difficulties rooted in a mathematical 
learning disability (MLD)? The quick answer to this question 
comes from incidence studies, which determine the frequency 
of a given condition. Incidence studies conducted in the U.S. 
and in many other countries indicate that approximately 6–10% 
of school age children have MLD. This finding means that many 
children with mathematical difficulties may not have MLD. 
What seems to differentiate MLD—defined here as a cognitive-
ly-based difficulty with mathematics—from other forms of 
mathematical difficulties is a poorly developed number sense. 

How early can we identify which children are at risk for 
poor mathematics outcomes? To date, there is no single univer-
sal indicator of this risk, but a poor sense of number in kinder-
garten is a strong predictor of poor math outcomes later (e.g., 
Jordan, Kaplan, Locuniak, & Ramineni, 2007; Mazzocco & 
Thompson, 2005). How can we diminish this risk? Just as low 
literacy environments put children at higher risk for poor read-
ing achievement, low numeracy environments promote risk for 
poor mathematics outcomes. Children benefit from systematic 
enrichment of literacy and numeracy experiences. But that may 
not be enough for children with MLD, just as mere exposure to 
print is insufficient for teaching a child with dyslexia to read. 
What remains to be seen is whether number sense interven-
tions should have an emphasis on specific components of 
number sense, depending on the child’s difficulty in number 
and other areas, and to what extent number-rich experiences 
benefit all children with MLD and other forms of MD. These 
questions are a focus of much ongoing research because of the 
growing realization of how much number matters in mathemat-
ical learning and performance. 

References
Berch, D. B. (2005). Making sense of number sense: Implications for children with 

mathematical disabilities. Journal of Learning Disabilities, 38, 289–384.

Blevins-Knabe, B. (2008). Fostering early numeracy at home. Encyclopedia of 
Language and Literacy Development (pp. 1–8). London, ON: Canadian Language 
and Literacy Research Network. Retrieved November 26, 2010 from  
http://www.literacyencyclopedia.ca/pdfs/topic.php?topId=245

Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematics 
competence are related to the intentional but not automatic processing of Arabic 
numerals. Cognition, 118, 32–44. 

de Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numer-
ical magnitude comparison for individual differences in mathematics achieve-
ment. Journal of Experimental Child Psychology, 103, 469–479.

Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford 
and New York: Oxford University Press. 

Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in 
Cognitive Sciences, 8(7), 307–314.

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). 
Cognitive mechanisms underlying achievement deficits in children with mathemat-
ical learning disability. Child Development, 78, 1343–1359. 

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the 
“number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and 
adults. Developmental Psychology, 44, 1457–1465. 

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in 
non-verbal number acuity correlate with math achievement. Nature, 455:2, 665–668. 

Jordan, N. C. (2007). Do words count? Connections between mathematical and read-
ing difficulties. In D. B. Berch and M. M. M. Mazzocco (Eds.) Why is math so hard 
for some children? The nature and origins of children’s mathematical learning  
difficulties and disabilities (pp. 107–120). Baltimore: Brookes Publishing.

Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-
grade math achievement from developmental number sense trajectories. Learning 
Disabilities Research & Practice, 22(1), 36–46. 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2010). Impaired acuity of the 
approximate number system underlies mathematical learning disability. Child 
Development (in press).

Mazzocco, M. M. M., & Thompson, R. E. (2005). Kindergarten Predictors of Math 
Learning Disability. Learning Disabilities Research & Practice, 20, 142–155. 

McCloskey, M. (2007). Quantitative literacy and developmental dyscalculias. In D. B. 
Berch and M. M. M. Mazzocco (Eds.) Why is math so hard for some children? The 
nature and origins of children’s mathematical learning difficulties and disabilities 
(pp. 415–429). Baltimore: Brookes Publishing.

Murphy, M. M., Mazzocco, M. M. M., Hanich, L., & Early, M. (2007). Cognitive char-
acteristics of children with Mathematics Learning Disability (MLD) vary as a func-
tion of criterion used to define MLD. Journal of Learning Disabilities, 40, 467–487. 

National Mathematics Advisory Panel (2008). Foundations for success: Final report of 
the National Mathematics Advisory Panel. U.S. Department of Education.  
Available online at http://www2.ed.gov/about/bdscomm/list/mathpanel/report/
final-report.pdf within the website of other resources, www.ed.gov/MathPanel

Siegler, R. (2009). Improving the numerical understanding of children from low-
income families. Child Development Perspectives, 3(2), 118–124.

Sternberg, R. J., & Grigorenko, E. L. (1999). Myths in psychology and education 
regarding the gene-environment debate. Teachers College Record, 100, 536–553.

Michèle M. M. Mazzocco, Ph.D., Director of the Math Skills 
Development Project at the Kennedy Krieger Institute, is Pro-
fessor of Psychiatry and Behavioral Sciences at the Johns 
Hopkins University School of Medicine, and Professor of 
Interdisciplinary Studies at the Johns Hopkins University 
School of Education. A developmental psychologist and a 
former early childhood educator, she initiated a longitudinal 
research project on children’s mathematical abilities and  
difficulties in 1997. Through this research, funded by the 
National Institutes of Child Health and Human Develop-
ment, she followed a cohort of students from grades K to 9. 
A primary focus of this research is on identifying math  
learning disability, while focusing on individual differences 
among children who do or do not struggle with mathematics. 
Dr. Mazzocco has published over 90 child development 
related research articles and chapters, and co-edited (with 
Dr. Daniel B. Berch) a book entitled, Why Is Math So Hard 
for Some Children? The Nature and Origin of Children’s 
Mathematical Learning Difficulties and Disabilities, pub-
lished by Brookes Publishing.

50    Perspectives on Language and Literacy  Spring 2011 The International Dyslexia Association

Number Matters  continued from page 49



The International Dyslexia Association Perspectives on Language and Literacy  Spring 2011    51

As part of the 2010 IDA conference in Phoenix, during the 
Global Partners Caucus, Dr. Louisa Moats gave a presenta-

tion of the International Dyslexia Association’s newly published, 
Knowledge and Practice Standards for Teachers of Reading. Dr. 
Moats’ remarks were enthusiastically received by the Global 
Partners in attendance. 

Students with Reading Disabilities Depend  
on Skilled Teaching

Although dyslexia and related reading and language prob-
lems may originate with neurobiological differences, they are 
mainly treated with skilled teaching. Informed and effective 
classroom instruction, especially in the early grades, can pre-
vent or at least effectively address and limit the severity of  
reading and writing problems. Potential reading failure can be 
recognized as early as preschool and kindergarten, if not 
sooner. A large body of research evidence shows that with 
appropriate, intensive instruction, all but the most severe  
reading disabilities can be ameliorated in the early grades, and 
students can get on track toward academic success. For those 
students with persistent dyslexia who need specialized instruc-
tion outside of the regular class, competent intervention from  
a specialist can lessen the impact of the disorder and help  
the student overcome and manage the most debilitating  
symptoms.

What is the nature of effective instruction for students at 
risk? The methods supported by research are those that are 
explicit, systematic, cumulative, and multisensory, in that they 
integrate listening, speaking, reading, and writing. The content 
of effective instruction emphasizes the structure of language, 
including the speech sound system (phonology), the writing 
system (orthography), the structure of sentences (syntax), the 
meaningful parts of words (morphology), meaning relationships 
among words and their referents (semantics), and the organiza-
tion of spoken and written discourse. The strategies emphasize 
planning, organization, attention to task, critical thinking, and 
self-management. While all such aspects of teaching are essen-
tial for students with poor reading and language skills, these 
strategies also enhance the potential of all students. 

Are Teachers Prepared?
Teaching language, reading, and writing effectively, espe-

cially to students experiencing difficulty, requires considerable 
knowledge and skill. Regrettably, the licensing and professional 

development practices currently endorsed by many states in 
the U.S. and many countries abroad are insufficient for the 
preparation and support of teachers charged with preventing 
and remediating reading problems. Researchers in the U.S. are 
finding that many teachers are licensed with insufficient knowl-
edge of reading difficulties and literacy instruction (Cunningham, 
Perry, Stanovich, & Stanovich, 2004; Joshi, Binks, Hougen, 
Ocker-Dean, Graham, & Smith, 2009; Moats & Foorman, 
2003; Spear-Swerling, 2008). Few practitioners are trained in 
sufficient depth to recognize early signs of risk or to implement 
research-based instruction (Smartt & Reschly, 2007; Walsh, 
Glaser, & Wilcox, 2006). In addition, there is as yet no interna-
tionally recognized credential for teachers of literacy that is 
honored throughout the international school community. 

To address these gaps and promote more rigorous, meaning-
ful, and effective teacher preparation and professional develop-
ment, the International Dyslexia Association (IDA) has adopted 
a comprehensive set of knowledge and practice standards for 
the training of teachers of reading. 

The Purpose of IDA’s Standards 
IDA’s Knowledge and Practice Standards should be used to 

guide the preparation, certification, and professional develop-
ment of those who teach reading and related literacy skills in 
classroom, remedial, and clinical settings. The standards aim to 
specify what any individual responsible for teaching reading 
should know and be able to do so that reading difficulties, 
including dyslexia, may be prevented, alleviated, or remediat-
ed. In addition, the standards seek to differentiate classroom 
teachers from therapists or specialists who are qualified to work 
with the most challenging students. 

Although programs that certify or support teachers, clini-
cians, or specialists differ in their preparation methodologies, 
teaching approaches, and organizational purposes, IDA hopes 
to bring these groups together under a common set of profes-
sional standards that will benefit all students with reading and 
writing difficulties. If a training entity aligns with these stan-
dards, the public should be assured that certified individuals 
are prepared to implement scientifically based and clinically 
proven best practices. 

The standards outline three critical dimensions of teacher 
preparation: 1) content knowledge necessary to teach reading 
and writing to students with dyslexia or related disorders or 

Continued on page 52
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Is This Your First Issue of Perspectives?
Will It Be Your Last? Not if you subscribe!

Don’t let this be your last issue of Perspectives! If you’re not already  
an IDA member, you can still subscribe and receive four quarterly issues.

Subscription prices: Individual $60.00 USD; Institutional $110.00 USD  
(international customers may be subject to additional charges). 

Or, join IDA as a member and keep Perspectives coming!  
Annual membership with subscription is $80.00 USD for  

parents/advocates; $95.00 USD for professionals. 

Subscriptions may be ordered from Linda A. Marston at  
(410) 296-0232 ext. 409 or lmarston@interdys.org or  

visit the IDA bookstore at www.interdys.org

who are at risk for reading difficulty; 2) practices of effective 
instruction; and 3) ethical conduct expected of professional 
educators and clinicians. Regular classroom teachers should 
also have the foundational knowledge of language, literacy 
development, and individual differences because they  
share responsibility for preventing and ameliorating reading 
problems.

The standards may be used for several purposes, including 
but not limited to 

IDA;

eligible to receive referrals through IDA offices; and 

certification examinations. 

IDA’s Strategic Goals
The standards and practices work of IDA will be a long-term 

endeavor. With the leadership of the National Board and  
headquarters staff, we will begin in 2011 to endorse programs 
that accredit and certify teachers in accordance with the IDA 
standards. Simultaneously, we will establish criteria and a 
review process for accreditation of international training pro-
grams, and develop processes whereby individual teachers 
who are unable to attend an endorsed or accredited program 
can be certified directly through IDA. All this will require  
time and collaboration among our office staff, National Board, 
and global partners, but IDA is prepared to play a central  

role in assuring that teachers are qualified for this rewarding 
profession.
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Windward Teacher Training Institute
Accredited at IMSLEC’s Teaching and Instructor of Teaching Levels

The Windward Teacher Training Institute, a division of 
Windward School, provides professional development based on

 scientifically validated research in child development, learning theory 
and pedagogy.  The accredited training program offers extensive 
coursework and supervision leading to national certification in 

multisensory structured language education.

Spring and Summer Courses and Workshops
•National Certification in Multisensory Structured Language Education

•Expository Writing Instruction
 •Multisensory Reading Instruction

 • Multisensory Instruction in Specific Content Areas

For further information:
Phone: (914) 949-1279  E-Mail: wtti@windwardny.org

Website: www.windwardny.org

Windward Teacher Training Institute is a division of  Windward School,an independent school 
for students with language-based learning disabilities, located in White Plains, New York.

 

12729 Northup Way, Suite 1, Bellevue WA  98005      Phone:  425-453-1190      Fax:  425-635-7762 
Email:  mail@slingerland.org             Web:  www.slingerland.org 

 
Slingerland® Multisensory Structured  

Language Instruction 
provides systematic, sequential instructional strategies for all settings 

 

Training Options 

 Documented Success 
Early Identification 
Cost Effective 
O-G Classroom Adaptation 
Integrates with any Reading      
or Language Arts curriculum 

 Oral Language Development 
Phonological Awareness 
Encoding 
Written Language 
Decoding 
Reading Comprehension        

    and Fluency 

Comprehensive Courses 
     (with practicum*)   
Short Courses  
Teaching Workshops  
In-Service and 

   Consultation 

*Accredited by IMSLEC at Teaching and Instructor of Teaching Levels 

 Processing Issues ♦Anxiety ♦  Lacking Focus  
Dyslexia ♦  Dysgraphia 

 

THE PRENTICE SCHOOL 
Celebrating 25 years of empowering children with dyslexia 

 
Pre-K—NEW High School ♦ Small Class Size  (12 -16) 

♦ Assessments ♦ Enrichment Classes  
Educational Assistive Technology  

Occupational Therapy ♦ Speech & Language Therapy   
Social Skills  ♦ Tutoring 

18341 Lassen Drive, Santa Ana, CA 92705 
714.244.4600  www.prentice.org 

Research-Based Multisensory Slingerland Approach 

WHY IS SCHOOL SO HARD? 
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FREE TRIAL OF WORD WORKOUT TEACHING 
MATERIALS
Get acquainted with the most efficient and reliable way 
to decode words of three or more syllables! The first five 
lessons of the Word Workout workbook are now avail-
able free upon request. Also available at no charge 
(within U.S.): a demo consisting of the first five lessons 
of the computer program. Try it out: your students will 
really like it. 
For details, visit www.thewordworkshop.com, or phone 
(937) 767-1142. 

PROVEN AND SUSTAINABLE CLINIC FOR SALE IN 
GUILFORD, CONNECTICUT
Learning House, LLC, the only facility in Connecticut 
offering Orton-Gillingham teacher training and 
instruction that is accredited by the Academy of Orton-
Gillingham. Recognized throughout the state, it is 
staffed by teachers who have Fellow, Certified, and 
Associate certification or are working toward Academy 
certification.
Contact Susan Santora, Owner and Director:  
264 Church Street, Guilford, CT 06437,
Tel: (203) 453-3691, www.learninghouse-ct.com

CLASSIFIEDS

Be the first to read  
Perspectives on Language and Literacy online!

Did you know that as a member of IDA you have  
immediate access to all articles in Perspectives?

Login today at http://www.interdys.org/webmember/login.aspx to enjoy  
the Spring 2011 Edition in a new digital format you can read online, cover to cover. 

Visit The IDA Bookstore
www.interdys.org

FOR MORE INFORMATION: 
Please contact Darnella Parks  
at (410) 296-0232 ext. 406 or  

dparks@interdys.org

Want to Advertise 
in Perspectives?
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provides materials needed  
to work with up to 3 students  
in Level 1 of S.P.I.R.E.

Visit eps.schoolspecialty.com/spiretrial
for details.

NEW! See S.P.I.R.E. in action
10-Step Lesson demonstration videos  
Visit eps.schoolspecialty.com/PD to view 
our S.P.I.R.E. lesson demonstration clips. 
See each step of the S.P.I.R.E. 10-step 
introductory lesson modeled with students.

Educators who have used S.P.I.R.E. have seen positive results with 
their students—and we want you to experience the same results.

Purchase a S.P.I.R.E. 
Trial Package for $200.00*

*One per customer, while supplies last.

Try S.P.I.R.E.®, 
see results with your students!

eps.schoolspecialty.com

11-190-ADV

A Special Savingsof 65%!
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